Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A 2011 review of 176 cases found that diagnoses made early in life (within a few days of birth) were associated with more severe disease and a mortality of 33%. Children diagnosed later, and who had milder symptoms, showed a lower mortality rate of ~3%.
That MMA can have disastrous effects on the nervous system has been long reported; however, the mechanism by which this occurs has never been determined. Published on June 15th 2015, research performed on the effects of methylmalonic acid on neurons isolated from fetal rats in an in vitro setting using a control group of neurons treated with an alternate acid of similar pH. These tests have suggested that methylmalonic acid causes decreases in cellular size and increase in the rate of cellular apoptosis in a concentration dependent manner with more extreme effects being seen at higher concentrations. Furthermore, micro-array analysis of these treated neurons have also suggested that on a epigenetic-level methylmalonic acid alters the transcription rate of 564 genes, notably including those involved in the apoptosis, p53, and MAPK signaling pathways.
A 2006 study of 279 patients found that of those with symptoms (185, 66%), 95% had suffered an encephalopathic crises usually with following brain damage. Of the persons in the study, 49 children died and the median age of death was 6.6 years. A Kaplan-Meier analysis of the data estimated that about 50% of symptomatic cases would die by the age of 25.
Infant mortality is high for patients diagnosed with early onset; mortality can occur within less than 2 months, while children diagnosed with late-onset syndrome seem to have higher rates of survival. Patients suffering from a complete lesion of mut0 have not only the poorest outcome of those suffering from methylaonyl-CoA mutase deficiency, but also of all individuals suffering from any form of methylmalonic acidemia.
A 1999 retrospective study of 74 cases of neonatal onset found that 32 (43%) patients died during their first hyperammonemic episode. Of those who survived, less than 20% survived to age 14. Few of these patients received liver transplants.
Isovaleric acidemia is estimated to affect at least 1 in 250,000 births in the United States.
The prognosis will vary depending on the severity of the condition and the individual's response to treatment. Prognosis is typically better for those with cobalamin-responsive variants and not promising in those suffering from noncobalamin-responsive variants, typically the milder variants have a higher frequency of appearance in the population than the more severe ones. Even with dietary modification and continued medical care, it may not be possible to prevent neurological damage in those with a nonresponsive acidemia. Without proper treatment or diagnosis, it not uncommon for the first acidemic attack to be fatal.
Despite these challenges, since it was first identified in 1967, treatment and understanding of the condition has improved to the point where it is not unheard of for even those with unresponsive forms of methylmalonic acidemia to be able to reach adulthood and even carry and deliver children safely.
Due to the rarity of the disease, it is hard to estimate mortality rates or life expectancy. One 2003 study which followed 88 cases receiving two different kinds of treatment found that very few persons lived beyond age 20 and none beyond age 30.
Propionic acidemia is inherited in an autosomal recessive pattern and is found in about 1 in 35,000 live births in the United States. The condition appears to be more common in Saudi Arabia, with a frequency of about 1 in 3,000. The condition also appears to be common in Amish, Mennonite and other populations where inbreeding is common.
Vegetarian diets and, for younger children, breastfeeding are common ways to limit protein intake without endangering tryptophan transport to the brain.
No sexual predilection is observed because the deficiency of glycogen synthetase activity is inherited as an autosomal recessive trait.
There are no methods for preventing the manifestation of the pathology of MSUD in infants with two defective copies of the BCKD gene. However, genetic counselors may consult with couples to screen for the disease via DNA testing. DNA testing is also available to identify the disease in an unborn child in the womb.
The major morbidity is a risk of fasting hypoglycemia, which can vary in severity and frequency. Major long-term concerns include growth delay, osteopenia, and neurologic damage resulting in developmental delay, intellectual deficits, and personality changes.
Organic acidemia, also called organic aciduria, is a term used to classify a group of metabolic disorders which disrupt normal amino acid metabolism, particularly branched-chain amino acids, causing a buildup of acids which are usually not present.
The branched-chain amino acids include isoleucine, leucine and valine. Organic acids refer to the amino acids and certain odd-chained fatty acids which are affected by these disorders.
The four main types of organic acidemia are: methylmalonic acidemia, propionic acidemia, isovaleric acidemia, and maple syrup urine disease.
Propionic acidemia, also known as propionic aciduria, propionyl-CoA carboxylase deficiency and ketotic glycinemia, is an autosomal recessive metabolic disorder, classified as a branched-chain organic acidemia.
The disorder presents in the early neonatal period with progressive encephalopathy. Death can occur quickly, due to secondary hyperammonemia, infection, cardiomyopathy, or basal ganglial stroke.
Propionic acidemia is a rare disorder that is inherited from both parents. Being autosomal recessive, neither parent shows symptoms, but both carry a defective gene responsible for this disease. It takes two faulty genes to cause PA, so there is a 1 in 4 chance for these parents to have a child with PA.
The life expectancy of patients with homocystinuria is reduced only if untreated. It is known that before the age of 30, almost one quarter of patients die as a result of thrombotic complications (e.g., heart attack).
Control of metabolism is vital during pregnancy of women with MSUD. To prevent detrimental abnormalities in development of the embryo or fetus, dietary adjustments should be made and plasma amino acid concentrations of the mother should be observed carefully and frequently. Amino acid deficiency can be detected through fetal growth, making it essential to monitor development closely.
Treatment or management of organic acidemias vary; eg see methylmalonic acidemia, propionic acidemia, isovaleric acidemia, and maple syrup urine disease.
As of 1984 there were no effective treatments for all of the conditions, though treatment for some included a limited protein/high carbohydrate diet, intravenous fluids, amino acid substitution, vitamin supplementation, carnitine, induced anabolism, and in some cases, tube-feeding.
As of 1993 ketothiolase deficiency and other OAs were managed by trying to restore biochemical and physiologic homeostasis; common therapies included restricting diet to avoid the precursor amino acids and use of compounds to either dispose of toxic metabolites or increase enzyme activity.
Argininosuccinic aciduria occurs in approximately 1 in 70,000 live births. Many patients can now be detected on the newborn screen if their blood citrulline is elevated.
Methylmalonyl-CoA mutase is a mitochondrial homodimer apoenzyme (EC. 5. 4.99.2) that focuses on the catalysis of methylmalonyl CoA to succinyl CoA. The enzyme is bound to adenosylcobalamin, a hormonal derivative of vitamin B12 in order to function. Methylmalonyl-CoA mutase deficiency is caused by genetic defect in the MUT gene responsible for encoding the enzyme. Deficiency in this enzyme accounts for 60% of the cases of methylmalonic acidemia.
Classical homocystinuria, also known as cystathionine beta synthase deficiency or CBS deficiency, is an inherited disorder of the metabolism of the amino acid methionine, often involving cystathionine beta synthase. It is an inherited autosomal recessive trait, which means a child needs to inherit a copy of the defective gene from both parents to be affected.
2-Methylbutyryl-CoA dehydrogenase deficiency, also called 2-Methylbutyryl glycinuria or short/branched-chain acyl-CoA dehydrogenase deficiency (SBCADD), is an autosomal recessive metabolic disorder. It causes the body to be unable to process the amino acid isoleucine properly. Initial case reports identified individuals with developmental delay and epilepsy, however most cases identified through newborn screening have been asymptomatic.
The treatment goal for individuals affected with OTC deficiency is the avoidance of hyperammonemia. This can be accomplished through a strictly controlled low-protein diet, as well as preventative treatment with nitrogen scavenging agents such as sodium benzoate. The goal is to minimize the nitrogen intake while allowing waste nitrogen to be excreted by alternate pathways. Arginine is typically supplemented as well, in an effort to improve the overall function of the urea cycle. If a hyperammonemic episode occurs, the aim of treatment is to reduce the individual's ammonia levels as soon as possible. In extreme cases, this can involve hemodialysis.
Gene therapy had been considered a possibility for curative treatment for OTC deficiency, and clinical trials were taking place at the University of Pennsylvania in the late 1990s. These were halted after the death of Jesse Gelsinger, a young man taking part in a phase I trial using an adenovirus vector. Currently, the only option for curing OTC deficiency is a liver transplant, which restores normal enzyme activity. A 2005 review of 51 patients with OTC deficiency who underwent liver transplant estimated 5-year survival rates of greater than 90%. Severe cases of OTC deficiency are typically evaluated for liver transplant by 6 months of age.
According to Clinicaltrials.gov, there are no current studies on hyperglycerolemia.
Clinicaltrials.gov is a service of the U.S. National Institutes of Health. Recent research shows patients with high concentrations of blood triglycerides have an increased risk of coronary heart disease. Normally, a blood glycerol test is not ordered. The research was about a child having elevated levels of triglycerides when in fact the child had glycerol kinase deficiency. This condition is known as pseudo-hypertriglyceridemia, a falsely elevated condition of triglycerides. Another group treated patients with elevated concentrations of blood triglycerides with little or no effect on reducing the triglycerides. A few laboratories can test for high concentrations of glycerol, and some laboratories can compare a glycerol-blanked triglycerides assay with the routine non-blanked method. Both cases show how the human body may exhibit features suggestive of a medical disorder when in fact it is another medical condition causing the issue.
A 2005 study on rats suggested that hyperprolininemia causes cognitive dysfunction.