Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
HCC mostly occurs in people with cirrhosis of the liver, and so risk factors generally include factors which cause chronic liver disease that may lead to cirrhosis. Still, certain risk factors are much more highly associated with HCC than others. For example, while heavy alcohol consumption is estimated to cause 60-70% of cirrhosis, the vast majority of HCC occurs in cirrhosis attributed to viral hepatitis (although there may be overlap). Recognized risk factors include:
- Chronic viral hepatitis (estimated cause of 80% cases globally)
- Chronic hepatitis B (approximately 50% cases)
- Chronic hepatitis C (approximately 25% cases)
- Toxins:
- Alcohol abuse: the most common cause of cirrhosis
- Aflatoxin
- Iron overload state (Hemochromatosis)
- Metabolic:
- Nonalcoholic steatohepatitis: up to 20% progress to cirrhosis
- Type 2 diabetes (probably aided by obesity)
- Congenital disorders:
- Alpha 1-antitrypsin deficiency
- Wilson's disease (controversial; while some theorise the risk increases, case studies are rare and suggest the opposite where Wilson's disease actually may confer protection)
- Hemophilia, although statistically associated with higher risk of HCC, this is due to coincident chronic viral hepatitis infection related to repeated blood transfusions over lifetime.
The significance of these risk factors varies globally. In regions where hepatitis B infection is endemic, such as southeast China, this is the predominant cause. In populations largely protected by hepatitis B vaccination, such as the United States, HCC is most often linked to causes of cirrhosis such as chronic hepatitis C, obesity, and alcohol abuse.
Certain benign liver tumors, such as hepatocellular adenoma, may sometimes be associated with coexisting malignant HCC. There is limited evidence for the true incidence of malignancy associated with benign adenomas; however, the size of hepatic adenoma is considered to correspond to risk of malignancy and so larger tumors may be surgically removed. Certain subtypes of adenoma, particularly those with β-catenin activation mutation, are particularly associated with increased risk of HCC.
Children and adolescents are unlikely to have chronic liver disease, however, if they suffer from congenital liver disorders, this fact increases the chance of developing hepatocellular carcinoma. Specifically, children with biliary atresia, infantile cholestasis, glycogen-storage diseases, and other cirrhotic diseases of the liver are predisposed to developing HCC in childhood.
Young adults afflicted by the rare fibrolamellar variant of hepatocellular carcinoma may have none of the typical risk factors, i.e. cirrhosis and hepatitis.
The risk of hepatocellular carcinoma in type 2 diabetics is greater (from 2.5 to 7.1 times the non diabetic risk) depending on the duration of diabetes and treatment protocol. A suspected contributor to this increased risk is circulating insulin concentration such that diabetics with poor insulin control or on treatments that elevate their insulin output (both states that contribute to a higher circulating insulin concentration) show far greater risk of hepatocellular carcinoma than diabetics on treatments that reduce circulating insulin concentration. On this note, some diabetics who engage in tight insulin control (by keeping it from being elevated) show risk levels low enough to be indistinguishable from the general population. This phenomenon is thus not isolated to diabetes mellitus type 2 since poor insulin regulation is also found in other conditions such as metabolic syndrome (specifically, when evidence of non alcoholic fatty liver disease or NAFLD is present) and again there is evidence of greater risk here too. While there are claims that anabolic steroid abusers are at greater risk (theorized to be due to insulin and IGF exacerbation), the only evidence that has been confirmed is that anabolic steroid users are more likely to have hepatocellular adenomas (a benign form of HCC) transform into the more dangerous hepatocellular carcinoma.
Although most patients present without any known risk factors evident, a number of risk factors for the development of cholangiocarcinoma have been described. In the Western world, the most common of these is primary sclerosing cholangitis (PSC), an inflammatory disease of the bile ducts which is closely associated with ulcerative colitis (UC). Epidemiologic studies have suggested that the lifetime risk of developing cholangiocarcinoma for a person with PSC is on the order of 10%–15%, although autopsy series have found rates as high as 30% in this population.
Certain parasitic liver diseases may be risk factors as well. Colonization with the liver flukes "Opisthorchis viverrini" (found in Thailand, Laos PDR, and Vietnam) or "Clonorchis sinensis" (found in China, Taiwan, eastern Russia, Korea, and Vietnam) has been associated with the development of cholangiocarcinoma. Patients with chronic liver disease, whether in the form of viral hepatitis (e.g. hepatitis B or hepatitis C), alcoholic liver disease, or cirrhosis of the liver due to other causes, are at significantly increased risk of cholangiocarcinoma. HIV infection was also identified in one study as a potential risk factor for cholangiocarcinoma, although it was unclear whether HIV itself or other correlated and confounding factors (e.g. hepatitis C infection) were responsible for the association.
Infection with the bacteria "Helicobacter bilis" and "Helicobacter hepaticus" species can cause biliary cancer.
Congenital liver abnormalities, such as Caroli's syndrome (a specific type of five recognized choledochal cysts), have been associated with an approximately 15% lifetime risk of developing cholangiocarcinoma. The rare inherited disorders Lynch syndrome II and biliary papillomatosis have also been found to be associated with cholangiocarcinoma. The presence of gallstones (cholelithiasis) is not clearly associated with cholangiocarcinoma. However, intrahepatic stones (called hepatolithiasis), which are rare in the West but common in parts of Asia, have been strongly associated with cholangiocarcinoma. Exposure to Thorotrast, a form of thorium dioxide which was used as a radiologic contrast medium, has been linked to the development of cholangiocarcinoma as late as 30–40 years after exposure; Thorotrast was banned in the United States in the 1950s due to its carcinogenicity.
Cholangiocarcinoma is a relatively rare form of cancer; each year, approximately 2,000 to 3,000 new cases are diagnosed in the United States, translating into an annual incidence of 1–2 cases per 100,000 people. Autopsy series have reported a prevalence of 0.01% to 0.46%. There is a higher prevalence of cholangiocarcinoma in Asia, which has been attributed to endemic chronic parasitic infestation. The incidence of cholangiocarcinoma increases with age, and the disease is slightly more common in men than in women (possibly due to the higher rate of primary sclerosing cholangitis, a major risk factor, in men). The prevalence of cholangiocarcinoma in patients with primary sclerosing cholangitis may be as high as 30%, based on autopsy studies.
Multiple studies have documented a steady increase in the incidence of intrahepatic cholangiocarcinoma over the past several decades; increases have been seen in North America, Europe, Asia, and Australia. The reasons for the increasing occurrence of cholangiocarcinoma are unclear; improved diagnostic methods may be partially responsible, but the prevalence of potential risk factors for cholangiocarcinoma, such as HIV infection, has also been increasing during this time frame.
Current dietary recommendations to prevent colorectal cancer include increasing the consumption of whole grains, fruits and vegetables, and reducing the intake of red meat and processed meats. Higher physical activity is also recommended. Physical exercise is associated with a modest reduction in colon but not rectal cancer risk. High levels of physical activity reduce the risk of colon cancer by about 21%. Sitting regularly for prolonged periods is associated with higher mortality from colon cancer. The risk is not negated by regular exercise, though it is lowered. The evidence for any protective effect conferred by fiber and fruits and vegetables is, however, poor. The risk of colon cancer can be reduced by maintaining a normal body weight.
Treatment can consist of surgery (hepatectomy), chemotherapy and/or therapies specifically aimed at the liver like radiofrequency ablation, transcatheter arterial chemoembolization, selective internal radiation therapy and irreversible electroporation. For most patients no effective treatment exists because both lobes are usually involved, making surgical resection impossible. Younger patients with metastases from colorectal cancer confined to one lobe of the liver and up to 4 in number may be treated by partial hepatectomy. In selected cases, chemotherapy may be given systemically or via hepatic artery.
In some tumors, notably those arising from the colon and rectum, apparently solitary metastases
or metastases to one or other lobes may be resected. A careful search for other metastases is required, including local recurrence of the original primary tumor (e.g., via colonoscopy) and dissemination elsewhere (e.g., via CT of the thorax). 5 year survival rates of 30-40% have been reported following resection.
It has been estimated that about half of colorectal cancer cases are due to lifestyle factors and about a quarter of all cases are preventable. Increasing surveillance, engaging in physical activity, consuming a diet high in fiber, and reducing smoking and alcohol consumption decrease the risk.
A liver metastasis is a malignant tumor in the liver that has spread from another organ affected by cancer. The liver is a common site for metastatic disease because of its rich, dual blood supply (the liver receives blood via the hepatic artery and portal vein). Metastatic tumors in the liver are 20 times more common than primary tumors. In 50% of all cases the primary tumor is of the gastrointestinal tract, other common sites include the breast, ovaries, bronchus and kidney.
Tumor emboli entering the sinusoids through the liver blood supply appear to be physically obstructed by the Kupffer cells, but if tumor emboli are larger, they tend to become lodged in the portal venous branches.
The greatest risk factors for RCC are lifestyle-related; smoking, obesity and hypertension (high blood pressure) have been estimated to account for up to 50% of cases.
Occupational exposure to some chemicals such as asbestos, cadmium, lead, chlorinated solvents, petrochemicals and PAH (polycyclic aromatic hydrocarbon) has been examined by multiple studies with inconclusive results.
Another suspected risk factor is the long term use of non-steroidal anti-inflammatory drugs (NSAIDS).
Finally, studies have found that women who have had a hysterectomy are at more than double the risk of developing RCC than those who have not. Moderate alcohol consumption, on the other hand, has been shown to have a protective effect. The reason for this remains unclear.
Most people with cancer of unknown primary origin have widely disseminated and incurable disease, although a few can be cured through treatment. With treatment, typical survival with CUP ranges from 6 to 16 months. Survival rates are lower in cases with visceral metastatic disease, ranging from 6 to 9 months. Survival rates are higher when the cancer is more limited to lymph nodes, pleura, or peritoneal metastasis, which ranges from 14 to 16 months. Long-term prognosis is somewhat better if a particular source of cancer is strongly suggested by clinical evidence.
CUP sometimes runs in families. It has been associated with familial lung, kidney, and colorectal cancers, which suggests that these sites may often be the origin of unidentifiable CUP cancers.
The prognosis of stomach cancer is generally poor, due to the fact the tumour has often metastasised by the time of discovery and the fact that most people with the condition are elderly (median age is between 70 and 75 years) at presentation. The five-year survival rate for stomach cancer is reported to be less than 10 percent.
Almost 300 genes are related to outcomes in stomach cancer with both unfavorable genes where high expression related to poor survival and favorable genes where high expression associated with longer survival times. Examples of poor prognosis genes include ITGAV and DUSP1.
Urothelial carcinoma is a prototypical example of a malignancy arising from environmental carcinogenic influences. By far the most important cause is cigarette smoking, which contributes to approximately one-half of the disease burden. Chemical exposure, such as those sustained by workers in the petroleum industry, the manufacture of paints and pigments (e.g., aniline dyes), and agrochemicals are known to predispose one to urothelial cancer. Interestingly, risk is lowered by increased liquid consumption, presumably as a consequence of increased urine production and thus less "dwell time" on the urothelial surface. Conversely, risk is increased among long-haul truck drivers and others in whom long urine dwell-times are encountered. As with most epithelial cancers, physical irritation has been associated with increased risk of malignant transformation of the urothelium. Thus, urothelial carcinomas are more common in the context of chronic urinary stone disease, chronic catheterization (as in patients with paraplegia or multiple sclerosis), and chronic infections. Some particular examples are listed below:
1. Certain drugs, such as cyclophosphamide, via the metabolites acrolein and phenacetin, are known to predispose to TCC (the latter especially with respect to the upper urinary tract).
2. Radiation exposure
3. Somatic mutation, such as deletion of chromosome 9q, 9p, 11p, 17p, 13q, 14q and overexpression of RAS (oncogene) and epidermal growth factor receptor (EGFR).
Hereditary factors have a minor impact on individual susceptibility with immediate relatives of people with RCC having a two to fourfold increased risk of developing the condition. Other genetically linked conditions also increase the risk of RCC, including hereditary papillary renal carcinoma, hereditary leiomyomatosis, Birt–Hogg–Dube syndrome, hyperparathyroidism-jaw tumor syndrome, familial papillary thyroid carcinoma, von Hippel–Lindau disease and sickle cell disease.
The most significant disease affecting risk however is not genetically linked – patients with acquired cystic disease of the kidney requiring dialysis are 30 times more likely than the general population to develop RCC.
Malignant neoplasm of liver and intrahepatic bile ducts. The most frequent forms are metastatic malignant neoplasm of liver)
- liver cell carcinoma
- hepatocellular carcinoma
- hepatoma
- cholangiocarcinoma
- hepatoblastoma
- angiosarcoma of liver
- Kupffer cell sarcoma
- other sarcomas of liver
Benign neoplasm of liver include hepatic hemangiomas, hepatic adenomas, and focal nodular hyperplasia (FNH).
Smoking increases the risk of developing gastric cancer significantly, from 40% increased risk for current smokers to 82% increase for heavy smokers. Gastric cancers due to smoking mostly occur in the upper part of the stomach near the esophagus. Some studies show increased risk with alcohol consumption as well.
15% of lung cancers in the US are of this type. Small cell lung cancer occurs almost exclusively in smokers; most commonly in heavy smokers and rarely in non-smokers.
Chronic liver diseases like chronic hepatitis, chronic alcohol abuse or chronic toxic liver disease may cause
- liver failure and hepatorenal syndrome
- fibrosis and cirrhosis of liver
Cirrhosis may also occur in primary biliary cirrhosis. Rarely, cirrhosis is congenital.
Small-cell carcinoma (also known as "small-cell lung cancer", or "oat-cell carcinoma") is a type of highly malignant cancer that most commonly arises within the lung, although it can occasionally arise in other body sites, such as the cervix, prostate, and gastrointestinal tract. Compared to non-small cell carcinoma, small cell carcinoma has a shorter doubling time, higher growth fraction, and earlier development of metastases.
Squamous cell carcinoma (SCC) of the lung is more common in men than in women. It is closely correlated with a history of tobacco smoking, more so than most other types of lung cancer. According to the Nurses' Health Study, the relative risk of SCC is approximately 5.5, both among those with a previous duration of smoking of 1 to 20 years, and those with 20 to 30 years, compared to never-smokers. The relative risk increases to approximately 16 with a previous smoking duration of 30 to 40 years, and approximately 22 with more than 40 years.
Although metastasis is widely accepted to be the result of the tumor cells migration, there is a hypothesis saying that some metastases are the result of inflammatory processes by abnormal immune cells. The existence of metastatic cancers in the absence of primary tumors also suggests that metastasis is not always caused by malignant cells that leave primary tumors.
Krukenberg tumors can be seen in all age groups, with an average age of 45 years. In most countries, cancer that has metastasized to the ovary accounts for only about 1 to 2% of ovarian cancer; in the remainder, the ovary itself is the primary cancer site. However, in Japan they represent a much higher percentage of malignancies in the ovary (almost 20%) due to the increased prevalence of gastric cancer.
Krukenberg tumors account for about 15% of metastatic cancers that initially appear to have arisen in the ovary, and as such is less common than metastasis arising from ovarian epithelial and germ-cell tumors.
In people who have had nongynecologic malignancy, approximately 20% of adnexal masses are malignant, and 60% of these are Krukenberg tumors.
According to Surveillance, Epidemiology, and End Results (SEER), the incidence of papillary cancer has increase from 4.8 to 14.9 per 100,000 from 1975 to 2012. Females are more likely to get papillary cancer when compared to males with incidence ratio of 2.5 to 1 where most of the cancers are diagnosed between 40 to 50 years old in females. However, death rates from papillary cancer remains static from 2003 to 2012 at 0.5 per 100,000 men and women. There was an increased incidence of papillary cancer from 1910 to 1960 due to the use of ioninsing radiation in treating childhood head and neck cancers. The incidence decreased after radiation therapy was abondoned. Environmental exposures to radiation such as atomic bombings of Hiroshima and Nagasaki and Chernobyl disaster also causes an increase in childhood papillary thyroid cancer at 5 to 20 years after the exposure to radiation. Family history of thyroid cancer syndrome such as familial adenomatous polyposis, Carney complex, Multiple endocrine neoplasia type 2 (MEN-2), Werner syndrome, and Cowden syndrome increases the risk of getting papillary cancer.
Although estimates vary, the annual incidence of clinically significant neuroendocrine tumors is approximately 2.5–5 per 100,000; two thirds are carcinoid tumors and one third are other NETs.
The prevalence has been estimated as 35 per 100,000, and may be considerably higher if clinically silent tumors are included. An autopsy study of the pancreas in people who died from unrelated causes discovered a remarkably high incidence of tiny asymptomatic NETs. Routine microscopic study of three random sections of the pancreas found NETs in 1.6%, and multiple sections identified NETs in 10%. As diagnostic imaging increases in sensitivity, such as endoscopic ultrasonography, very small, clinically insignificant NETs may be coincidentally discovered; being unrelated to symptoms, such neoplasms may not require surgical excision.
Metastatic breast cancer, also referred to as metastases, advanced breast cancer, secondary tumours, secondaries or stage 4 breast cancer, is a stage of breast cancer where the disease has spread to distant sites beyond the axillary lymph nodes. There is no cure for metastatic breast cancer. There is no stage after IV.
It usually occurs several years after the primary breast cancer, although it is sometimes diagnosed at the same time as the primary breast cancer or, rarely, before the primary breast cancer has been diagnosed.
Metastatic breast cancer cells frequently differ from the preceding primary breast cancer in properties such as receptor status. The cells have often developed resistance to several lines of previous treatment and have acquired special properties that permit them to metastasize to distant sites. Metastatic breast cancer can be treated, sometimes for many years, but it cannot be cured. Distant metastases are the cause of about 90% of deaths due to breast cancer.
Breast cancer can metastasize anywhere in body but primarily metastasizes to the bone, lungs, regional lymph nodes, liver and brain, with the most common site being the bone. Treatment of metastatic breast cancer depends on location of the metastatic tumours and includes surgery, radiation, chemotherapy, biological, and hormonal therapy.
Typical environmental barriers in a metastatic event include physical (a basement membrane), chemical (reactive oxygen species or ROS, hypoxia and low pH) and biological (immune surveillance, inhibitory cytokines and regulatory extra-cellular matrix (ECM) peptides) components. Organ-specific anatomic considerations also influence metastasis; these include blood-flow patterns from the primary tumor and the homing ability of cancer cells to certain tissues. The targeting by cancer cells of specific organs is probably regulated by chemo-attractant factors and adhesion molecules produced by the target organ, along with cell-surface receptors expressed by the tumor cells.