Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Some studies suggest a hormonal link. Specifically, the hormone relaxin has been indicated.
A genetic factor is indicated since the trait runs in families and there is an increased occurrence in some ethnic populations (e.g., Native Americans, Lapps / Sami people). A locus has been described on chromosome 13. Beukes familial dysplasia, on the other hand, was found to map to an 11-cM region on chromosome 4q35, with nonpenetrant carriers not affected.
Hip dysplasia is considered to be a multifactorial condition. That means that several factors are involved in causing the condition to manifest.
The cause of this condition is unknown; however, some factors of congenital hip dislocation are through heredity and racial background. It is also thought that the higher rates in some ethnic groups (such as some Native American groups) is due to the practice swaddling of infants, which is known to be a potential risk factor for developing dysplasia. It also has a low risk in African Americans and southern Chinese.
Multiple epiphyseal dysplasia (MED) encompasses a spectrum of skeletal disorders, most of which are inherited in an autosomal dominant form. However, there is an autosomal recessive form.
Associated genes include COL9A1, COL9A2, COL9A3, COMP, and MATN3.
Types include:
People with Pyle disease are often asymptomatic. Dental anomalies may require orthodontic interventions. Skeletal anomalies may require orthopedic surgery.
Ischiopatellar dysplasia is often considered a familial condition. Ischiopatellar dysplasia has been identified on region 5.6 cM on chromosome 17q22. Mutations in the TBX4 (T-box protein 4) gene have been found to cause ischiopatellar dysplasia due to the essential role TBX4 plays in lower limb development since TBX4 is a transcription factor.
Pseudoachondroplasia is inherited in an autosomal dominant manner, though one case of a very rare autosomal recessive form has been documented. The offspring of affected individuals are at 50% risk of inheriting the mutant allele. Prenatal testing by molecular genetic examination is available if the disease-causing mutation has been identified in an affected family member (Hecht et al. 1995).
A recent article in 2015 reported a persistent notochord in a fetus at 23 weeks of gestation. The fetus had an abnormal spine, shortened long bones and a left clubfoot. After running postmortem tests and ultrasound, the researchers believed that the fetus suffered from hypochondrogenesis. Hypochondrogenesis is caused when type II collagen is abnormally formed due to a mutation in the COL2A1 gene. Normally, the cartilaginous notochord develops into the bony vertebrae in a human body. The COL2A1 gene results in malformed type II collagen, which is essential in the transition from collagen to bone. This is the first time that researchers found a persistent notochord in a human body due to a COL2A1 mutation.
Till date about 18 cases of Spondylocostal dysostosis have been reported in literature.
Fairbank's disease or multiple epiphyseal dysplasia (MED) is a rare genetic disorder (dominant form: 1 in 10,000 births) that affects the growing ends of bones. Long bones normally elongate by expansion of cartilage in the growth plate (epiphyseal plate) near their ends. As it expands outward from the growth plate, the cartilage mineralizes and hardens to become bone (ossification). In MED, this process is defective.
Rachitic rosary is due to a deficiency of calcium resulting in lack of mineralization and an overgrowth of costochondral joint cartilage. The calcium deficiency may be caused by Rickets or other causes of calcium deficiency such as hypoparathyroidism.
Ischiopatellar dysplasia is a rare autosomal dominant disorder characterized by a hypoplasia of the patellae as well as other bone anomalies, especially concerning the pelvis and feet.
Spondyloepimetaphyseal dysplasia, Pakistani type is a form of spondyloepimetaphyseal dysplasia involving "PAPSS2" (also known as "ATPSK2"). The condition is rare.
Radiographic features include delayed epiphyseal ossification at the hips and knees, platyspondyly with irregular end plates and narrowed joint spaces, diffuse early osteoarthritic changes (in the spine and hands), mild brachydactyly and mild metaphyseal abnormalities which predominantly involve the hips and knees.
Babies born with Jarcho-Levin may be very healthy and grow up to lead normal lives. However, many individuals with Jarcho-Levin suffer from problems of respiratory insufficiency secondary to volume-restricted thoraces. These individuals will often develop pulmonary complications and die in infancy or early childhood. The disparity in outcomes of those with the syndrome is related to the fact that Jarcho-Levin actually encompasses two or more distinct syndromes, each with its own range of prognoses. The syndromes currently recognized as subtypes of Jarcho-Levin are termed spondylothoracic dysplasia and spondylocostal dysostosis. The disease is related to the SRRT gene.
Kniest Dysplasia is an autosomal dominant condition. This means that the person only needs to have one copy of the mutated gene in order to have the condition. People with a family history are at a higher risk of having the disease than people with no family history. A random mutation in the gene can cause a person with no family history to also have the condition.
Spondyloepimetaphyseal dysplasia is a genetic condition affecting the bones.
Types include:
- Spondyloepimetaphyseal dysplasia, Strudwick type
- Spondyloepiphyseal dysplasia congenita
- Spondyloepimetaphyseal dysplasia, Pakistani type
Treatment in fibrous dysplasia is mainly palliative, and is focused on managing fractures and preventing deformity. There are no medications capable of altering the disease course. Intravenous bisphosphonates may be helpful for treatment of bone pain, but there is no clear evidence that they strengthen bone lesions or prevent fractures. Surgical techniques that are effective in other disorders, such as bone grafting, curettage, and plates and screws, are frequently ineffective in fibrous dysplasia and should be avoided. Intramedullary rods are generally preferred for management of fractures and deformity in the lower extremities. Progressive scoliosis can generally be managed with standard instrumentation and fusion techniques. Surgical management in the craniofacial skeleton is complicated by frequent post-operative FD regrowth, and should focus on correction of functional deformities. Prophylactic optic nerve decompression increases the risk of vision loss and is contraindicated.
Managing endocrinopathies is a critical component of management in FD. All patients with fibrous dysplasia should be evaluated and treated for endocrine diseases associated with McCune–Albright syndrome. In particular untreated growth hormone excess may worsen craniofacial fibrous dysplasia and increase the risk of blindness. Untreated hypophosphatemia increases bone pain and risk of fractures.
Pseudoachondroplasia is an inherited disorder of bone growth. It is a genetic autosomal dominant disorder. It is generally not discovered until 2-3 years of age, since growth is normal at first. Pseudoachondroplasia is usually first detected by a drop of linear growth in contrast to peers, a curious, waddling gait or arising lower limb deformities.
Pseudoachondroplasia (also known as PSACH, Pseudoachondroplastic dysplasia, and Pseudoachondroplastic spondyloepiphyseal dysplasia syndrome) is an osteochondrodysplasia that results in mild to severely short stature due to the inhibition of skeletal growth primarily in the limbs. Though similarities in nomenclature may cause confusion, Pseudoachondroplasia should not be confused with achondroplasia, which is a clinically and genetically distinct skeletal dysplasia. Pseudoachondroplasia is caused by a heterozygous mutation in the gene encoding cartilage oligomeric matrix protein COMP. Mutation in the COMP gene can also multiple epiphyseal dysplasia. Despite the radioclinical similarities between pseudoachondroplasia and multiple epiphyseal dysplasia, the latter is less severe.132400
Sclerosteosis is caused by mutations in the gene that encode for the sclerostin protein.
Metaphyseal dysplasia, also known as Pyle's disease, Pyle's syndrome, Pyle-Cohn syndrome, and Bakwin-Krida syndrome is a rare disease in which the outer part of the shafts of long bones is thinner than normal and there is an increased chance of fractures.
Spondyloepiphyseal dysplasia congenita (abbreviated to SED more often than SDC) is a rare disorder of bone growth that results in dwarfism, characteristic skeletal abnormalities, and occasionally problems with vision and hearing. The name of the condition indicates that it affects the bones of the spine (spondylo-) and the ends of bones (epiphyses), and that it is present from birth (congenital). The signs and symptoms of spondyloepiphyseal dysplasia congenita are similar to, but milder than, the related skeletal disorders achondrogenesis type 2 and hypochondrogenesis. Spondyloepiphyseal dysplasia congenita is a subtype of collagenopathy, types II and XI.
It is one of a spectrum of skeletal disorders caused by mutations in the "SLC26A2" gene. The protein encoded by this gene is essential for the normal development of cartilage and for its conversion to bone. Cartilage is a tough, flexible tissue that makes up much of the skeleton during early development. Most cartilage is later converted to bone, but in adulthood this tissue continues to cover and protect the ends of bones and is present in the nose and external ears. Mutations in the SLC26A2 gene alter the structure of developing cartilage, preventing bones from forming properly and resulting in the skeletal problems characteristic of diastrophic dysplasia.
This condition is an autosomal recessive disorder, meaning that the defective gene is located on an autosome, and both parents must carry one copy of the defective gene in order to have a child born with the disorder. The parents of a child with an autosomal recessive disorder are usually not affected by the disorder.
Fibrochondrogenesis is quite rare. A 1996 study from Spain determined a national minimal prevalence for the disorder at 8 cases out of 1,158,067 live births.
A United Arab Emirates (UAE) University report, from early 2003, evaluated the results of a 5-year study on the occurrence of a broad range of osteochondrodysplasias. Out of 38,048 newborns in Al Ain, over the course of the study period, fibrochondrogenesis was found to be the most common of the recessive forms of osteochondrodysplasia, with a prevalence ratio of 1.05:10,000 births.
While these results represented the most common occurrence within the group studied, they do not dispute the rarity of fibrochondrogenesis. The study also included the high rate of consanguinous marriages as a prevailing factor for these disorders, as well as the extremely low rate of diagnosis-related pregnancy terminations throughout the region.
Fibrous dysplasia is a mosaic disease resulting from post-zygotic activating mutations of the "GNAS" locus at 20q13.2-q13.3, which codes for the α subunit of the G G-coupled protein receptor. In bone, constitutive Gα signaling results in impaired differentiation and proliferation of bone marrow stromal cells. Proliferation of these cells causes replacement of normal bone and marrow with fibrous tissue. The bony trabeculae are abnormally thin and irregular, and often likened to Chinese characters (bony spicules on biopsy).
Fibrous dysplasia is not hereditary, and there has never been a case of transmission from parent to child.
The medication(s) listed below have been approved by the Food and Drug Administration (FDA) as orphan products for treatment of this condition. Learn more orphan products.