Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
The syndrome primarily affects young males. Preliminary studies suggest that prevalence may be 1.8 per 10,000 live male births. 50% of those affected do not live beyond 25 years of age, with deaths attributed to the impaired immune function.
Nutrition disorders and nutritional deficits may cause neurodevelopmental disorders, such as spina bifida, and the rarely occurring anencephaly, both of which are neural tube defects with malformation and dysfunction of the nervous system and its supporting structures, leading to serious physical disability and emotional sequelae. The most common nutritional cause of neural tube defects is folic acid deficiency in the mother, a B vitamin usually found in fruits, vegetables, whole grains, and milk products. (Neural tube defects are also caused by medications and other environmental causes, many of which interfere with folate metabolism, thus they are considered to have multifactorial causes.) Another deficiency, iodine deficiency, produces a spectrum of neurodevelopmental disorders ranging from mild emotional disturbance to severe mental retardation. (see also cretinism)
Excesses in both maternal and infant diets may cause disorders as well, with foods or food supplements proving toxic in large amounts. For instance in 1973 K.L. Jones and D.W. Smith of the University of Washington Medical School in Seattle found a pattern of "craniofacial, limb, and cardiovascular defects associated with prenatal onset growth deficiency and developmental delay" in children of alcoholic mothers, now called fetal alcohol syndrome, It has significant symptom overlap with several other entirely unrelated neurodevelopmental disorders. It has been discovered that iron supplementation in baby formula can be linked to lowered I.Q. and other neurodevelopmental delays.
Brain trauma in the developing human is a common cause (over 400,000 injuries per year in the US alone, without clear information as to how many produce developmental sequellae) of neurodevelopmental syndromes. It may be subdivided into two major categories, congenital injury (including injury resulting from otherwise uncomplicated premature birth) and injury occurring in infancy or childhood. Common causes of congenital injury are asphyxia (obstruction of the trachea), hypoxia (lack of oxygen to the brain) and the mechanical trauma of the birth process itself.
Lujan–Fryns syndrome is a rare X-linked dominant syndrome, and is therefore more common in males than females. Its prevalence within the general population has not yet been determined.
This disorder is caused by an abnormality of the TBCE gene, the locus for which is on Chromosome 1q42.3. The locus is a 230 kb region of gene with identified deletions and mutations in affected individuals. There are rare cases of the disorder not being due to a TBCE gene abnormality.
X-linked intellectual disability (previously known as X-linked mental retardation) refers to forms of intellectual disability which are specifically associated with X-linked recessive inheritance.
As with most X-linked disorders, males are more heavily affected than females. Females with one affected X chromosome and one normal X chromosome tend to have milder symptoms.
Unlike many other types of intellectual disability, the genetics of these conditions are relatively well understood. It has been estimated there are ~200 genes involved in this syndrome; of these ~100 have been identified.
X-linked intellectual disability accounts for ~16% of all cases of intellectual disability in males.
Several X-linked syndromes include intellectual disability as part of the presentation. These include:
- Coffin–Lowry syndrome
- MASA syndrome
- MECP2 duplication syndrome
- X-linked alpha thalassemia mental retardation syndrome
- mental retardation and microcephaly with pontine and cerebellar hypoplasia
Mental retardation and microcephaly with pontine and cerebellar hypoplasia (MICPCH), also known as Mental retardation, X-linked, syndromic, Najm type (MRXSNA), is a rare genetic disorder of infants characterised by intellectual disability and pontocerebellar hypoplasia.
The disorder is associated with a mutation in the "CASK" gene which is transmitted in an X-linked manner. As with the vast majority of genetic disorders, there is no known cure to MICPCH.
The following values seem to be aberrant in children with CASK gene defects: lactate, pyruvate, 2-ketoglutarate, adipic acid and suberic acid, which seems to backup the proposal that CASK affects mitochondrial function. It is also speculated that phosphoinositide 3-kinase in the inositol metabolism is impacted in the disease, causing folic acid metabolization problems.
A low socioeconomic status in a deprived neighborhood may include exposure to “environmental stressors and risk factors.” Socioeconomic inequalities are commonly measured by the Cartairs-Morris score, Index of Multiple Deprivation, Townsend deprivation index, and the Jarman score. The Jarman score, for example, considers “unemployment, overcrowding, single parents, under-fives, elderly living alone, ethnicity, low social class and residential mobility.” In Vos’ meta-analysis these indices are used to view the effect of low SES neighborhoods on maternal health. In the meta-analysis, data from individual studies were collected from 1985 up until 2008. Vos concludes that a correlation exists between prenatal adversities and deprived neighborhoods. Other studies have shown that low SES is closely associated with the development of the fetus in utero and growth retardation. Studies also suggest that children born in low SES families are “likely to be born prematurely, at low birth weight, or with asphyxia, a birth defect, a disability, fetal alcohol syndrome, or AIDS.” Bradley and Corwyn also suggest that congenital disorders arise from the mother’s lack of nutrition, a poor lifestyle, maternal substance abuse and “living in a neighborhood that contains hazards affecting fetal development (toxic waste dumps).” In a meta-analysis that viewed how inequalities influenced maternal health, it was suggested that deprived neighborhoods often promoted behaviors such as smoking, drug and alcohol use. After controlling for socioeconomic factors and ethnicity, several individual studies demonstrated an association with outcomes such as perinatal mortality and preterm birth.
A prenatal diagnostic is possible and very reliable when mother is carrier of the syndrome. First, it's necessary to determine the fetus' sex and then study X-chromosomes. In both cases, the probability to transfer the X-chromosome affected to the descendants is 50%. Male descendants who inherit the affected chromosome will express the symptoms of the syndrome, but females who do will be carriers.
Alopecia contractures dwarfism mental retardation syndrome or (ACD mental retardation syndrome) is a developmental disorder which causes mainly baldness and dwarfism in combination with intellectual disability; skeletal anomalies, caries and nearsightedness are also typical.
The ACD mental retardation syndrome was first described in 1980 by Albert Schinzel and only few cases have since been identified in the world. At the time Dr. Schinzel made no conclusion of the hereditary pattern of this syndrome but similarities between cases reported by year 2000 seem to suggest autosomal or x-linked recessive inheritance or possibly a dominant mutation caused by mosaicism as causes of this syndrome.
M2DS is one of the several types of X-linked intellectual disability. The cause of M2DS is a duplication of the MECP2 or Methyl CpG binding protein 2 gene located on the X chromosome (Xq28). The MeCP2 protein plays a pivotal role in regulating brain function. Increased levels of MECP2 protein results in abnormal neural function and impaired immune system. Mutations in the MECP2 gene are also commonly associated with Rett syndrome in females. Advances in genetic testing and more widespread use of Array Comparative Genomic Hybridization has led to increased diagnosis of MECP2 duplication syndrome. It is thought to represent ~1% of X-linked male mental disability cases.
Substances whose toxicity can cause congenital disorders are called "teratogens", and include certain pharmaceutical and recreational drugs in pregnancy as well as many environmental toxins in pregnancy.
A review published in 2010 identified 6 main teratogenic mechanisms associated with medication use: folate antagonism, neural crest cell disruption, endocrine disruption, oxidative stress, vascular disruption and specific receptor- or enzyme-mediated teratogenesis.
It is estimated that 10% of all birth defects are caused by prenatal exposure to a teratogenic agent. These exposures include, but are not limited to, medication or drug exposures, maternal infections and diseases, and environmental and occupational exposures. Paternal smoking use has also been linked to an increased risk of birth defects and childhood cancer for the offspring, where the paternal germline undergoes oxidative damage due to cigarette use. Teratogen-caused birth defects are potentially preventable. Studies have shown that nearly 50% of pregnant women have been exposed to at least one medication during gestation. During pregnancy, a female can also be exposed to teratogens from the contaminated clothing or toxins within the seminal fluid of a partner. An additional study found that of 200 individuals referred for genetic counseling for a teratogenic exposure, 52% were exposed to more than one potential teratogen.
The disorder has been associated with mutations in the L1CAM gene. This syndrome has severe symptoms in males, while females are carriers because only one X-chromosome is affected.
Gillespie syndrome, also called aniridia, cerebellar ataxia and mental deficiency. is a rare genetic disorder. The disorder is characterized by partial aniridia (meaning that part of the iris is missing), ataxia (motor and coordination problems), and, in most cases, intellectual disability. It is heterogeneous, inherited in either an autosomal dominant or autosomal recessive manner. Gillespie syndrome was first described by American ophthalmologist Fredrick Gillespie in 1965.
Smith–Fineman–Myers syndrome (SFMS1), congenital disorder that causes birth defects. This syndrome was named after 3 men, Richard D. Smith, Robert M. Fineman and Gart G. Myers who discovered it around 1980.
Alpha-thalassemia mental retardation syndrome (ATRX), also called alpha-thalassemia X-linked mental retardation, nondeletion type or ATR-X syndrome, is a condition caused by a mutated gene. Females with this mutated gene have no specific signs or features, but may demonstrate skewed X chromosome inactivation. Hemizygous males tend to be moderately intellectually disabled and have physical characteristics including coarse facial features, microcephaly (small head size), hypertelorism (widely spaced eyes), a depressed nasal bridge, a tented upper lip, and an everted lower lip. Mild or moderate anemia, associated with alpha-thalassemia, is part of the condition.
It is associated with "ATRX".
Weissenbacher-Zweymüller syndrome affects males and females in the same numbers. About 30 cases have been reported in medical literature. This disorder can be underdiagnosed causing no true frequency in the population. Only 30 cases have been reported in medical literature.
SFMS is an X-linked disease by chromosome Xq13. X-linked diseases map to the human X chromosome because this syndrome is an X chromosome linked females who have two chromosomes are not affected but because males only have one X chromosome, they are more likely to be affected and show the full clinical symptoms. This disease only requires one copy of the abnormal X-linked gene to display the syndrome. Since females have two X chromosomes, the effect of one X chromosome is recessive and the second chromosome masks the affected chromosome.
Affected fathers can never pass this X-linked disease to their sons but affected fathers can pass the X-linked gene to their daughters who has a 50% chance to pass this disease-causing gene to each of her children. Since females who inherit this gene do not show symptoms, they are called carriers. Each of the female's carrier's son has a 50% chance to display the symptoms but none of the female carrier's daughters would display any symptoms.
Some patients with SFMS have been founded to have a mutation of the gene in the ATRX on the X chromosome, also known as the Xq13 location. ATRX is a gene disease that is associated with other forms of X-linked mental retardation like Alpha-thalassemia/mental retardation syndrome, Carpenter syndrome, Juberg-Marsidi syndrome, and soastic paraplegia. It is possible that patients with SFMS have Alpha-thalassemia/mental retardation syndrome without the affected hemoglobin H that leads to Alphathalassemia/ mental retardation syndrome in the traditionally recognized disease.
Researchers are also investigating the genetic similarities between Dubowitz Syndrome and Smith-Lemli-Opitz syndrome (SLOS). Patients with SLOS and Dubowitz syndromes experience many of the same abnormalities, and the two disorders are hypothesized to be linked. A characteristic of SLOS is a low cholesterol level and a high 7-dehydrocholesterol level. Cholesterol is essential for several key functions of the body, including cell membrane structure, embryogenesis, and steroid and sex hormone synthesis. Impaired cholesterol biosynthesis or transport possibly accounts for most of the symptoms of both SLOS and Dubowitz. Although only a few patients with Dubowitz Syndrome have been identified with altered cholesterol levels, researchers are exploring whether Dubowitz Syndrome, like SLOS, carries a link to a defect in the cholesterol biosynthetic pathway.
The exact biochemical pathology of the disease is still under research because of the low prevalence of the disease and the wide array of symptoms associated with it. Several studies have focused on different aspects of the disease to try to find its exact cause and expression. One study examined the specific oral features in one patient. Another found abnormalities in the brain, such as corpus callosum dysgenesis, an underdeveloped anterior pituitary and a brain stalk with an ectopic neurohypophysis.
There is no known cure for this syndrome. Patients usually need ophthalmic surgery and may also need dental surgery
Genetic counseling and screening of the mother's relatives is recommended.
Although the exact pathology of Dubowitz syndrome is not known yet, it is heritable and classified as an autosomal recessive disease. Furthermore, there is an occasional parental consanguinity. Several cases point to Dubowitz syndrome occurring in monozygotic twins, siblings, and cousins. There is considerable phenotypic variability between cases, especially in regards to intelligence. Although substantial evidence points to the genetic basis of this disorder, the phenotypic similarity is found in fetal alcohol syndrome. Further studies need to be done to determine whether this environmental agent effects the expression of the genotype. Breakdown of chromosomes is known to occur.
Unlike Borjeson-Forssman-Lehmann syndrome, a disorder that was determined to be very similar to WTS, the individuals with Wilson–Turner syndrome do not develop cataracts or hypermetropia later in life. By far, the most debilitating part of this disorder is intellectual disability. Many of the other symptoms are more easily managed through hormone treatment, proper diet and exercise, and speech therapy.
Sanjad-Sakati syndrome is a rare autosomal recessive genetic condition seen in offspring of Middle Eastern origin. It was first described in Saudi Arabia, but has been seen in Qatari, Kuwaiti, Omani and other children from the Middle East as well as elsewhere. The condition is caused by mutations or deletions in the TBCE gene of Chromosome No.1.
The condition is characterised by a triad of growth and mental retardation, hypoparathyroidism and dysmorphism.
Oculofaciocardiodental syndrome is a rare X linked genetic disorder.