Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In itself, NSML is not a life-threatening diagnosis, most people diagnosed with the condition live normal lives. Obstructive cardiomyopathy and other pathologic findings involving the cardiovascular system may be a cause of death in those whose cardiac deformities are profound.
In the two predominant mutations of NSML (Y279C and T468M) the mutations cause a loss of catalytic activity of the SHP2 protein (the gene product of the "PTPN11" gene), which is a previously unrecognized behavior for this class of mutations. This interferes with growth factor and related signalling. While further research confirms this mechanism, additional research is needed to determine how this relates to all of the observed effects of NSML.
Most affected people have a stable clinical course but are often transfusion dependent.
Recent findings in genetic research have suggested that a large number of genetic disorders, both genetic syndromes and genetic diseases, that were not previously identified in the medical literature as related, may be, in fact, highly related in the genetypical root cause of the widely varying, phenotypically-observed disorders. Thus, Alstrom syndrome is a ciliopathy. Other known ciliopathies include primary ciliary dyskinesia, Bardet-Biedl syndrome, polycystic kidney and liver disease, nephronophthisis, Meckel-Gruber syndrome and some forms of retinal degeneration.
The true prevalence of PMS has not been determined. More than 1200 people have been identified worldwide according the Phelan-McDermid Syndrome Foundation. However, it is believed to be underdiagnosed due to inadequate genetic testing and lack of specific clinical features. It is known to occur with equal frequency in males and females. Studies using chromosomal microarray for diagnosis indicate that at least 0.5% of cases of ASD can be explained by mutations or deletions in the "SHANK3" gene. In addition when ASD is associated with ID, "SHANK3" mutations or deletions have been found in up to 2% of individuals.
Griscelli syndrome type 2 (also known as "partial albinism with immunodeficiency") is a rare autosomal recessive syndrome characterized by variable pigmentary dilution, hair with silvery metallic sheen, frequent pyogenic infections, neutropenia, and thrombocytopenia.
A prognosis for Alström syndrome is complicated because it widely varies. Any person that has the syndrome have different set of disorders. Permanent blindness, deafness, and Type 2 diabetes may occur. Liver and kidney failure can progressively get worse. The life expectancy is usually reduced and the patients rarely live past 50 years old.
This includes Chediak-Higashi syndrome and Elejalde syndrome (neuroectodermal melanolysosomal disease).
On several locations in the world people are studying on the subject of 1q21.1 deletion syndrome. The syndrome was identified for the first time with people with heart abnormalities. The syndrome has later been found with patients with autism and schizophrenia. Research is done on patients with a symptom of the syndrome, to find more patients with the syndrome.
There may be a relation between autism and schizophrenia. Literature shows that nine locations have been found on the DNA where the syndromes related to autism or schizophrenia can be found, the so-called "hotspots": 1q21.1, 3q29, 15q13.3, 16p11.2, 16p13.1, 16q21, 17p12, 21q11.2 and 21q13.3. With a number of hotspots both autism and schizophrenia were observed at that location. In other cases, either autism or schizophrenia has been seen.
Statistical research showed that schizophrenia is more common in combination with 1q21.1 deletion syndrome. On the other side, autism is significantly more common with 1q21.1 duplication syndrome. Further research confirmed that the odds on a relation between schizophrenia and deletions at 1q21.1, 3q29, 15q13.3, 22q11.21 en Neurexin 1 (NRXN1) and duplications at 16p11.2 are at 7.5% or higher.
Common variations in the BCL9 gene, which is in the distal area, confer risk of schizophrenia and may also be associated with bipolar disorder and major depressive disorder.
Research is done on 10–12 genes on 1q21.1 that produce DUF1220-locations. DUF1220 is an unknown protein, which is active in the neurons of the brain near the neocortex. Based on research on apes and other mammals, it is assumed that DUF1220 is related to cognitive development (man: 212 locations; chimpanzee: 37 locations; monkey: 30 locations; mouse: 1 location). It appears that the DUF1220-locations on 1q21.1 are in areas that are related to the size and the development of the brain. The aspect of the size and development of the brain is related to autism (macrocephaly) and schizophrenia (microcephaly). It has been proposed that a deletion or duplication of a gene that produces DUF1220-areas might cause growth and development disorders in the brain
Another relation between macrocephaly with duplications and microcephaly with deletions has been seen in research on the HYDIN Paralog or HYDIN2. This part of 1q21.1 is involved in the development of the brain. It is assumed to be a dosage-sensitive gene. When this gene is not available in the 1q21.1 area, it leads to microcephaly. HYDIN2 is a recent duplication (found only in humans) of the HYDIN gene found on 16q22.2.
Research on the genes CHD1L and PRKAB2 within lymphoblast cells lead to the conclusion that anomalies appear with the 1q21.1-deletionsyndrome:
- CHD1L is an enzyme which is involved in untangling the chromatides and the DNA repair system. With 1q21.1 deletion syndrome a disturbance occurs, which leads to increased DNA breaks. The role of CHD1L is similar to that of helicase with the Werner syndrome
- PRKAB2 is involved in maintaining the energy level of cells. With 1q21.1-deletion syndrome this function was attenuated.
GJA5 has been identified as the gene that is responsible for the phenotypes observed with congenital heart diseases on the 1q21.1 location. In case of a duplication of GJA5 tetralogy of Fallot is more common. In case of a deletion other congenital heart diseases than tetralogy of Fallot are more common.
As its name indicates, a person with the syndrome has one Y chromosome and four X chromosomes on the 23rd pair, thus having 49 chromosomes rather than the normal 46. As with most categories of aneuploidy disorders, 49,XXXXY syndrome is often accompanied by intellectual disability. It can be considered a form of 47, XXY Klinefelter syndrome, or a variant of it.
It is genetic but not hereditary. This means that while the genes of the parents cause the syndrome, there is a small chance of more than one child having the syndrome. The probability of inheriting the disease is about 1%.
The individuals with this syndrome are males, but 49, XXXXX also exists with similar characteristics.
The RASopathies are developmental syndromes caused by germline mutations (or in rare cases by somatic mosaicism) in genes that alter the Ras subfamily and mitogen-activated protein kinases that control signal transduction, including:
- Capillary malformation-AV malformation syndrome
- Autoimmune lymphoproliferative syndrome
- Cardiofaciocutaneous syndrome
- Hereditary gingival fibromatosis type 1
- Neurofibromatosis type 1
- Noonan syndrome
- Costello syndrome, Noonan-like
- Legius syndrome, Noonan-like
- Noonan syndrome with multiple lentigines, formerly called LEOPARD syndrome, Noonan-like
The diagnosis of PPS has been made in several ethnic groups, including Caucasian, Japanese, and sub-Saharan African. Males and females are equally likely to suffer from the syndrome. Since the disorder is very rare, its incidence rate is difficult to estimate, but is less than 1 in 10,000.
Children with Pfeiffer syndrome types 2 and 3 "have a higher risk for neurodevelopmental disorders and a reduced life expectancy" than children with Pfeiffer syndrome type 1, but if treated, favorable outcomes are possible. In severe cases, respiratory and neurological complications often lead to early death.
McKusick–Kaufman syndrome is a genetic condition associated with MKKS.
The condition is named for Dr. Robert L. Kaufman and Victor McKusick. It is sometimes known by the abbreviation MKS. In infancy it can be difficult to distinguish between MKS and the related Bardet–Biedl syndrome, as the more severe symptoms of the latter condition rarely materialise before adulthood.
The incidence of Fraser syndrome is 0.043 per 10,000 live born infants and 1.1 in 10,000 stillbirths, making it a rare syndrome.
Worth syndrome is caused by a mutation in the LRP5 gene, located on human chromosome 11q13.4. The disorder is inherited in an autosomal dominant fashion. This indicates that the defective gene responsible for a disorder is located on an autosome (chromosome 11 is an autosome), and only one copy of the defective gene is sufficient to cause the disorder, when inherited from a parent who has the disorder.
The 5q-syndrome is characterized by macrocytic anemia, often a moderate thrombocytosis, erythroblastopenia, megakaryocyte hyperplasia with nuclear hypolobation, and an isolated interstitial deletion of chromosome 5. The 5q- syndrome is found predominantly in females of advanced age.
1q21.1 deletion syndrome or 1q21.1 (recurrent) microdeletion is a rare aberration of chromosome 1.
A human cell has one pair of identical chromosomes on chromosome 1. With the 1q21.1 deletion syndrome, one chromosome of the pair is not complete, because a part of the sequence of the chromosome is missing. One chromosome has the normal length and the other is too short.
In 1q21.1, the '1' stands for chromosome 1, the 'q' stands for the long arm of the chromosome and '21.1' stands for the part of the long arm in which the deletion is situated.
The syndrome is a form of the 1q21.1 copy number variations and it is a deletion in the distal area of the 1q21.1 part. The CNV leads to a very variable phenotype and the manifestations in individuals are quite variable. Some people who have the syndrome can function in a normal way, while others have symptoms of mental retardation and various physical anomalies.
1q21.1 microdeletion is a very rare chromosomal condition. Only 46 individuals with this deletion have been reported in medical literature as of August 2011.
Recent findings in genetic research have suggested that a large number of genetic disorders, both genetic syndromes and genetic diseases, that were not previously identified in the medical literature as related, may be, in fact, highly related in the genotypical root cause of these widely varying, phenotypically-observed disorders. Orofaciodigital syndrome has been found to be a ciliopathy. Other known ciliopathies include primary ciliary dyskinesia, Bardet-Biedl syndrome, polycystic kidney disease and polycystic liver disease, nephronophthisis, Alstrom syndrome, Meckel-Gruber syndrome and some forms of retinal degeneration.
22q13 deletion syndrome (spoken as "twenty-two q one three", see Locus (genetics)) is a genetic disorder caused by deletions or rearrangements on the q terminal end (long arm) of chromosome 22. Any abnormal genetic variation in the q13 region that presents with significant manifestations (phenotype) typical of a terminal deletion may be diagnosed as 22q13 deletion syndrome. 22q13 deletion syndrome is often called Phelan-McDermid syndrome (abbreviated PMS). There is disagreement among researchers as to the exact definition of 22q13 deletion syndrome. The Developmental Synaptopathies Consortium defines PMS as being caused by "SHANK3" mutations, a definition that appears to exclude terminal deletions. The requirement to include "SHANK3" in the definition is supported by many, but not by those who first described 22q13 deletion syndrome.
A prototypical terminal deletion of 22q13 can be uncovered by karyotype analysis, but many terminal and interstitial deletions are too small. The availability of DNA microarray technology for revealing multiple genetic problems simultaneously has been the diagnostic tool of choice. The falling cost for whole exome sequencing and, eventually, whole genome sequencing, may replace DNA microarray technology for candidate evaluation. However, fluorescence in situ hybridization (FISH) tests remain valuable for diagnosing cases of mosaicism (mosaic genetics) and chromosomal rearrangements (e.g., ring chromosome, unbalanced chromosomal translocation). Although early researchers sought a monogenic (single gene genetic disorder) explanation, recent studies have not supported that hypothesis (see Etiology, below).
FACES syndrome is a syndrome of unique facial features, anorexia, cachexia, eye and skin anomalies.
It is a rare disease and estimated to occur in less than 1 in 1 million people.
Several researchers around the world are studying on the subject of 1q21.1 duplication syndrome. The syndrome was identified for the first time in people with heart abnormalities. The syndrome was later observed in patients who had autism or schizophrenia.
It appears that there is a relation between autism and schizophrenia. Literature shows that nine locations have been found on the DNA where the syndromes related to autism or schizophrenia can be found, the so-called "hotspots": 1q21.1, 3q29, 15q13.3, 16p11.2, 16p13.1, 16q21, 17p12, 21q11.2 and 21q13.3. With a number of hotspots both autism and schizophrenia were observed at that location. In other cases, either autism or schizophrenia has been seen, while they are searching for the opposite.
Statistical research showed that schizophrenia is significantly more common in combination with 1q21.1 deletion syndrome. On the other side, autism is significantly more common with 1q21.1 duplication syndrome. Similar observations were done for chromosome 16 on 16p11.2 (deletion: autism/duplication: schizophrenia), chromosome 22 on 22q11.21 (deletion (Velo-cardio-facial syndrome): schizophrenia/duplication: autism) and 22q13.3 (deletion (Phelan-McDermid syndrome): schizophrenia/duplication: autism). Further research confirmed that the odds on a relation between schizophrenia and deletions at 1q21.1, 3q29, 15q13.3, 22q11.21 en Neurexin 1 (NRXN1) and duplications at 16p11.2 are at 7.5% or higher.
Common variations in the BCL9 gene, which is in the distal area, confer risk of schizophrenia and may also be associated with bipolar disorder and major depressive disorder.
Research is done on 10-12 genes on 1q21.1 that produce DUF1220-locations. DUF1220 is an unknown protein, which is active in the neurons of the brain near the neocortex. Based on research on apes and other mammals, it is assumed that DUF1220 is related to cognitive development (man: 212 locations; chimpanzee: 37 locations; monkey: 30 locations; mouse: 1 location). It appears that the DUF1220-locations on 1q21.1 are in areas that are related to the size and the development of the brain. The aspect of the size and development of the brain is related to autism (macrocephaly) and schizophrenia (microcephaly). It is assumed that a deletion or a duplication of a gene that produces DUF1220-areas might cause growth and development disorders in the brain
Another relation between macrocephaly with duplications and microcephaly with deletions has been seen in research on the HYDIN Paralog or HYDIN2. This part of 1q21.1 is involved in the development of the brain. It is assumed to be a dosage-sensitive gene. When this gene is not available in the 1q21.1 area it leads to microcephaly. HYDIN2 is a recent duplication (found only in humans) of the HYDIN gene found on 16q22.2.
GJA5 has been identified as the gene that is responsible for the phenotypes observed with congenital heart diseases on the 1q21.1 location. In case of a duplication of GJA5 tetralogy of Fallot is more common. In case of a deletion other congenital heart diseases than tetralogy of Fallot are more common.
Legius syndrome (LS) is an autosomal dominant condition characterized by cafe au lait spots. It was first described in 2007 and is often mistaken for neurofibromatosis type I (NF-1), it is caused by mutations in the SPRED1 gene, it is also known as Neurofibromatosis Type 1-like syndrome (NFLS). The condition is a RASopathy, developmental syndromes due to germline mutations in genes
NBCCS has an incidence of 1 in 50,000 to 150,000 with higher incidence in Australia. One aspect of NBCCS is that basal-cell carcinomas will occur on areas of the body which are not generally exposed to sunlight, such as the palms and soles of the feet and lesions may develop at the base of palmar and plantar pits.
One of the prime features of NBCCS is development of multiple BCCs at an early age, often in the teen years. Each person who has this syndrome is affected to a different degree, some having many more characteristics of the condition than others.
Clinically, McKusick–Kaufman syndrome is characterized by a combination of three features: postaxial polydactyly, heart defects, and genital abnormalities:
- Vaginal atresia with hydrometrocolpos
- Double vagina and/or uterus.
- Hypospadias, chordee (a downward-curving penis), and undescended testes (cryptorchidism).
- ureter stenosis or ureteric atresia