Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Lujan–Fryns syndrome is a rare X-linked dominant syndrome, and is therefore more common in males than females. Its prevalence within the general population has not yet been determined.
The prevalence rate has been estimated to be less than 1/1,000,000 worldwide. However, it is much more common in the French-Canadian population of the Saguenay and Lac-St-Jean regions of Quebec, Canada, where it has a frequency of about 1 in 2100 in live births, and a carrier rate of 1 in 23.
The prognosis is poor. Patients are usually wheelchair bound by their 20s and die by their 30s.
The prognosis varies widely from case to case, depending on the severity of the symptoms. However, almost all people reported with Aicardi syndrome to date have experienced developmental delay of a significant degree, typically resulting in mild to moderate to profound intellectual disability. The age range of the individuals reported with Aicardi syndrome is from birth to the mid 40s.
There is no cure for this syndrome.
There have been 30 cases of Marden-Walker Syndrome reported since 1966. The first case of this was in 1966 a female infant was diagnosed with blepharophimosis, joint contractures, arachnodactyly and growth development delay. She ended up passing at 3 months due to pneumonia.
Prognosis varies widely depending on severity of symptoms, degree of intellectual impairment, and associated complications. Because the syndrome is rare and so newly identified, there are no long term studies.
Worldwide prevalence of Aicardi Syndrome is estimated at several thousand, with approximately 900 cases reported in the United States.
The prognosis is poor; affected individuals are either stillborn or die shortly after birth. The longest survival reported in literature is of 134 days.
This syndrome is transmitted as an autosomal recessive disorder and there is a risk for recurrence of 25% in future pregnancies.
The cause of Primrose syndrome is currently unknown. This condition is extremely rare and seems to spontaneously occur, regardless of family history.
In the case studied by Dalai et al. in 2010, it was found that an abnormally high amount of calcitonin, a hormone secreted by the thyroid gland to stabilize blood calcium levels, was present in the blood serum. This suggests that the thyroid gland is releasing an abnormal amount of calcitonin, resulting in the disruption of calcium level homeostasis. No molecular cause was found, but an expanded microarray analysis of the patient found a 225.5 kb deletion on chromosome 11p between rs12275693 and rs1442927. Whether or not this deletion is related to the syndrome or is a harmless mutation is unknown. The deletion was not present in the patient's mother's DNA sample, but the father's DNA was unavailable.
The Chromosome 18 Registry & Research Society
The Chromosome 18 Registry & Research Society in Europe
Chromosome 18 Clinical Research Center, University of Texas Health Science Center at San Antonio
Unique
Chromosome Disorder Outreach
Currently, research is focusing on identifying the role of the genes on 18p in causing the signs and symptoms associated with deletions of 18p. This will ultimately enable predictive genotyping.
TGIF-Mutations and deletions of this gene have been associated with holoprosencephaly. Penetrance is incomplete, meaning that a deletion of one copy of this gene is not in and of itself sufficient to cause holoprosencephaly. Ten to fifteen percent of people with 18p- have holoprosencephaly, suggesting that other genetic and environmental facts play a role in the etiology of holoprosencephaly in these individuals.
A prenatal diagnostic is possible and very reliable when mother is carrier of the syndrome. First, it's necessary to determine the fetus' sex and then study X-chromosomes. In both cases, the probability to transfer the X-chromosome affected to the descendants is 50%. Male descendants who inherit the affected chromosome will express the symptoms of the syndrome, but females who do will be carriers.
The disorder has been associated with mutations in the L1CAM gene. This syndrome has severe symptoms in males, while females are carriers because only one X-chromosome is affected.
Affected individuals have a somewhat shortened lifespan. The maximum described lifespan is 67 years. Adults with 13q deletion syndrome often need support services to maintain their activities of daily living, including adult day care services or housing services.
Several researchers around the world are studying on the subject of 1q21.1 duplication syndrome. The syndrome was identified for the first time in people with heart abnormalities. The syndrome was later observed in patients who had autism or schizophrenia.
It appears that there is a relation between autism and schizophrenia. Literature shows that nine locations have been found on the DNA where the syndromes related to autism or schizophrenia can be found, the so-called "hotspots": 1q21.1, 3q29, 15q13.3, 16p11.2, 16p13.1, 16q21, 17p12, 21q11.2 and 21q13.3. With a number of hotspots both autism and schizophrenia were observed at that location. In other cases, either autism or schizophrenia has been seen, while they are searching for the opposite.
Statistical research showed that schizophrenia is significantly more common in combination with 1q21.1 deletion syndrome. On the other side, autism is significantly more common with 1q21.1 duplication syndrome. Similar observations were done for chromosome 16 on 16p11.2 (deletion: autism/duplication: schizophrenia), chromosome 22 on 22q11.21 (deletion (Velo-cardio-facial syndrome): schizophrenia/duplication: autism) and 22q13.3 (deletion (Phelan-McDermid syndrome): schizophrenia/duplication: autism). Further research confirmed that the odds on a relation between schizophrenia and deletions at 1q21.1, 3q29, 15q13.3, 22q11.21 en Neurexin 1 (NRXN1) and duplications at 16p11.2 are at 7.5% or higher.
Common variations in the BCL9 gene, which is in the distal area, confer risk of schizophrenia and may also be associated with bipolar disorder and major depressive disorder.
Research is done on 10-12 genes on 1q21.1 that produce DUF1220-locations. DUF1220 is an unknown protein, which is active in the neurons of the brain near the neocortex. Based on research on apes and other mammals, it is assumed that DUF1220 is related to cognitive development (man: 212 locations; chimpanzee: 37 locations; monkey: 30 locations; mouse: 1 location). It appears that the DUF1220-locations on 1q21.1 are in areas that are related to the size and the development of the brain. The aspect of the size and development of the brain is related to autism (macrocephaly) and schizophrenia (microcephaly). It is assumed that a deletion or a duplication of a gene that produces DUF1220-areas might cause growth and development disorders in the brain
Another relation between macrocephaly with duplications and microcephaly with deletions has been seen in research on the HYDIN Paralog or HYDIN2. This part of 1q21.1 is involved in the development of the brain. It is assumed to be a dosage-sensitive gene. When this gene is not available in the 1q21.1 area it leads to microcephaly. HYDIN2 is a recent duplication (found only in humans) of the HYDIN gene found on 16q22.2.
GJA5 has been identified as the gene that is responsible for the phenotypes observed with congenital heart diseases on the 1q21.1 location. In case of a duplication of GJA5 tetralogy of Fallot is more common. In case of a deletion other congenital heart diseases than tetralogy of Fallot are more common.
Acrocallosal syndrome (also known as ACLS) is a rare autosomal recessive syndrome characterized by corpus callosum agenesis, polydactyly, multiple dysmorphic features, motor and mental retardation, and other symptoms. The syndrome was first described by Albert Schinzel in 1979.
It is associated with "GLI3".
Mosaic mutations in PIK3CA have been found to be the genetic cause of M-CM. Genetic testing for the mutation is currently only available on a research basis. Other overgrowth conditions with distinct phenotypes have also been found to be caused by mosaic mutations in PIK3CA. How different mutations in this gene result in a variety of defined clinical syndromes is still being clarified. Mutations in PIK3CA have not been found in a non-mosaic state in any of these disorders, so it is unlikely that the conditions could be inherited.
Marden–Walker syndrome (MWS) is a rare autosomal recessive congenital disorder. It is characterized by blepharophimosis, microcephaly, micrognathia, multiple joint contractures, arachnodactyly, camptodactyly, kyphoscoliosis, and delayed motor development and is often associated with cystic dysplastic kidneys, dextrocardia, Dandy-Walker malformation, and agenesis of corpus callosum".
A 'de novo'-situation appears in about 75% of the cases. In 25% of the cases, one of the parents is carrier of the syndrome, without any effect on the parent. Sometimes adults have mild problems with the syndrome. To find out whether either of the parents carries the syndrome, both parents have to be tested. In several cases, the syndrome was identified with the child, because of an autism disorder or another problem, and later it appeared that the parent was affected as well. The parent never knew about it up till the moment that the DNA-test proved the parent to be a carrier.
In families where both parents have been tested negative on the syndrome, chances on a second child with the syndrome are extremely low. If the syndrome was found in the family, chances on a second child with the syndrome are 50%, because the syndrome is autosomal dominant. The effect of the syndrome on the child cannot be predicted.
The syndrome can be detected with fluorescence in situ hybridization and Affymetrix GeneChip Operating Software.
For parents with a child with the syndrome, it is advisable to consult a physician before a next pregnancy and to do prenatal screening.
The prognosis for children with NMDs varies depending on the specific disorder and the degree of brain abnormality and subsequent neurological signs and symptoms.
Genitopatellar Syndrome is an autosomal dominant inheritance where the mutation in the KAT6B causes the syndrome. The KAT6B gene is responsible for making an enzyme called histone acetyltransferase which functions in regulating and making of histone which are proteins that attach to DNA and give the chromosomes their shape. The function of histone acetyltransferase produced from KAT6B is unknown but it is considered as a regulator of early developments. There is little known about how the mutation in the KAT6B causes the syndrome but researchers suspects that the mutations occur near the end of the KAT6B gene and causes it to produce shortened acetyltransferase enzyme. The shortened enzyme alters the regulation of other genes. On the other hand, the mutation of KAT6B leading to the specific features of genitopatellar syndrome is still not surely proven.
Oculocerebrocutaneous syndrome (also known as Delleman–Oorthuys syndrome) is a condition characterized by orbital cysts, microphthalmia, porencephaly, agenesis of the corpus callosum, and facial skin tags.
Vici syndrome is inherited in an autosomal recessive manner. This means the defective gene responsible for the disorder is located on an autosome, and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.
The hypothesis of autosomal recessive inheritance of Vici syndrome was strengthened in 2002 with the clinical description of two new cases, one brother and one sister, by Chiyonobu et al.
Numerous possible risk factors have been identified, including gestational diabetes, transplacental infections (the "TORCH complex"), first trimester bleeding, and a history of miscarriage. As well, the disorder is found twice as often in female babies. However, there appears to be no correlation between HPE and maternal age.
There is evidence of a correlation between HPE and the use of various drugs classified as being potentially unsafe for pregnant and lactating mothers. These include insulin, birth control pills, aspirin, lithium, thorazine, retinoic acid, and anticonvulsants. There is also a correlation between alcohol consumption and HPE, along with nicotine, the toxins in cigarettes and toxins in cigarette smoke when used during pregnancy.
Vici syndrome, also called immunodeficiency with cleft lip/palate, cataract, hypopigmentation and absent corpus callosum, is a rare autosomal recessive congenital disorder characterized by albinism, agenesis of the corpus callosum, cataracts, cardiomyopathy, severe psychomotor retardation, seizures, immunodeficiency, and recurrent severe infections. To date about 50 cases have been reported.