Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Because the cause of facial clefts still is unclear, it is difficult to say what may prevent children being born with facial clefts. It seems that folic acid contributes to lowering the risk of a child being born with a facial cleft.
Environmental influences may also cause, or interact with genetics to produce, orofacial clefting. An example of how environmental factors might be linked to genetics comes from research on mutations in the gene "PHF8" that cause cleft lip/palate (see above). It was found that PHF8 encodes for a histone lysine demethylase, and is involved in epigenetic regulation. The catalytic activity of PHF8 depends on molecular oxygen, a fact considered important with respect to reports on increased incidence of cleft lip/palate in mice that have been exposed to hypoxia early during pregnancy. In humans, fetal cleft lip and other congenital abnormalities have also been linked to maternal hypoxia, as caused by e.g. maternal smoking, maternal alcohol abuse or some forms of maternal hypertension treatment. Other environmental factors that have been studied include: seasonal causes (such as pesticide exposure); maternal diet and vitamin intake; retinoids — which are members of the vitamin A family; anticonvulsant drugs; nitrate compounds; organic solvents; parental exposure to lead; alcohol; cigarette use; and a number of other psychoactive drugs (e.g. cocaine, crack cocaine, heroin).
Current research continues to investigate the extent to which folic acid can reduce the incidence of clefting.
Genetic counseling for VWS involves discussion of disease transmission in the autosomal dominant manner and possibilities for penetrance and expression in offspring. Autosomal dominance means affected parents have a 50% chance of passing on their mutated "IRF6" allele to a their child. Furthermore, if a cleft patient has lip pits, he or she has a ten times greater risk of having a child with cleft lip with or without cleft palate than a cleft patient who does not have lip pits. Types of clefting between parents and affected children are significantly associated; however, different types of clefts may occur horizontally and vertically within the same pedigree. In cases where clefting is the only symptom, a complete family history must be taken to ensure the patient does not have non-syndromic clefting.
Females are affected more than males, and the condition occurs in permanent (adult) teeth more than deciduous (baby teeth or milk teeth).
The cause of isolated missing teeth remains unclear, but the condition is believed to be associated with genetic or environmental factors during dental development. Missing teeth have been reported in association with increased maternal age, low birth weight, multiple births and rubella virus infection during embryonic life.
There is a possible correlation between tooth agenesis and innervation. A relationship was also postulated between abnormalities of the brainstem and the presence of agenesis.
Hypodontia is often familial, and can also be associated with genetic disorders such as ectodermal dysplasia or Down syndrome. Hypodontia can also be seen in people with cleft lip and palate.
Among the possible causes are mentioned genetic, hormonal, environmental and infectious.
Cause due to hormonal defects: idiopathic hypoparathyroidism and pseudohypoparathyroidism. Exists the possibility that this defect depends on a moniliasis (candidiasis, "candida endocrinopathy syndrome").
Environmental causes involving exposure to PCBs (ex.dioxin), radiation, anticancer chemotherapeutic agents, allergy and toxic epidermal necrolysis after drug.
Infectious causes of hypodontia: rubella, candida.
The Journal of the American Dental Association published preliminary data suggesting a statistical association between hypodontia of the permanent teeth and epithelial ovarian cancer (EOC). The study shows that women with EOC are 8.1 times more likely to have hypodontia than are women without EOC. The suggestion therefore is that hypodontia can serve as a "marker" for potential risk of EOC in women.
Also the increased frequency of hypodontia in twins and low birth weight in twins with hypodontia suggests that environmental factors during perinatal are responsible hypodontia.
These lesions usually present in neonates, although they may not come to clinical attention until adulthood (for cosmetic reasons). There is no gender predilection. They are present in approximately 3-6 per 1000 live births.
Lip pits may be surgically removed either for aesthetic reasons or discomfort due to inflammation caused by bacterial infections or chronic saliva excretion, though spontaneous shrinkage of the lip pits has occurred in some rare cases. Chronic inflammation has also been reported to cause squamous-cell carcinoma. It is essential to completely remove the entire lip pit canal, as mucoid cysts can develop if mucous glands are not removed. A possible side effect of removing the lip pits is a loose lip muscle. Other conditions associated with VWS, including CL, CP, congenital heart defects, etc. are surgically corrected or otherwise treated as they would be if they were non-syndromic.
There is still some discussion on whether FND is sporadic or genetic. The majority of FND cases are sporadic. Yet, some studies describe families with multiple members with FND. Gene mutations are likely to play an important role in the cause. Unfortunately, the genetic cause for most types of FND remains undetermined.
The nose anomalies found in facial clefts vary. The main goal of the treatment is to reconstruct the nose to get a functional and esthetic acceptable result. A few possible treatment options are to reconstruct the nose with a forehead flap or reconstruct the nasal dorsum with a bone graft, for example a rib graft. The nasal reconstruction with a forehead flap is based on the repositioning of a skin flap from the forehead to the nose. A possible downside of this reconstruction is that once you performed it at a younger age, you can’t lengthen the flap at a later stage. A second operation is often needed if the operation is done on early age, because the nose has a restricted growth in the cleft area. Repair of the ala (wing of the nose) often requires the inset of cartilage graft, commonly taken from the ear.
Many genes associated with syndromic cases of cleft lip/palate (see above) have been identified to contribute to the incidence of isolated cases of cleft lip/palate. This includes in particular sequence variants in the genes "IRF6", "PVRL1" and "MSX1". The understanding of the genetic complexities involved in the morphogenesis of the midface, including molecular and cellular processes, has been greatly aided by research on animal models, including of the genes "BMP4", "SHH", "SHOX2", "FGF10" and "MSX1".
In the 1960s and 1970s, several studies were conducted sponsored by the U.S. Atomic Energy Commission, with the aim of finding a link between genetics and hypodontia.
OAFNS is a combination of FND and oculo-auriculo-vertebral spectrum (OAVS).
The diagnosis of OAVS is based on the following facial characteristics: microtia (underdeveloped external ear), preauricular tags, facial asymmetry, mandibular hypoplasia and epibulbar lipodermoids (benign tumor of the eye which consists of adipose and fibrous tissue).
There still remains discussion about the classification and the minimal amount of characteristics. When someone presents with FND and the characteristics of OAVS, the diagnosis OAFNS may be made.
As the incidence of OAFNS is unknown, there are probably a lot of children with mild phenotypes that aren’t being diagnosed as being OAFNS.
The cause of OAFNS is unknown, but there are some theories about the genesis. Autosomal recessive inheritance is suggested because of a case with two affected siblings and a case with consanguineous parents. However, another study shows that it is more plausible that OAFNS is sporadic.
It is known that maternal diabetes plays a role in developing malformations of craniofacial structures and in OAVS. Therefore, it is suggested as a cause of OAFNS. Folate deficiency is also suggested as possible mechanism.
Low-dose CT protocols should be considered in diagnosing children with OAFNS.
They are more common in males than females, occurring in a ratio of about 5:1. They are strongly associated with the presence of torus mandibularis and torus palatinus.
There are many potential factors involved.
- Congenital hypopituitarism
- Ectodermal dysplasia
- Down syndrome
- Ionizing radiation to the jaws during tooth development (odontogenesis)
- Chemotherapy during tooth development
- Marshall syndrome
- Rieger syndrome
- Focal dermal hypoplasia
- Silver-Russell syndrome
- Williams syndrome
- Gorlin-Chaudhry-Moss syndrome
- Coffin–Siris syndrome
- Salamon syndrome
- Cleft lip and palate
Others include trichorhinopharyngeal, odontotrichomelic, neuroectodermal and dermo-odontodysplasia syndromes.
Lip pits are harmless and do not usually require any treatment, although in some reported cases surgical excision has been used.
In disease states, maxillary prognathism is associated with Cornelia de Lange syndrome; however, so-called false maxillary prognathism, or more accurately, retrognathism, where there is a lack of growth of the mandible, is by far a more common condition.
Prognathism, if not extremely severe, can be treated in growing patients with orthodontic functional or orthopaedic appliances. In adult patients this condition can be corrected by means of a combined surgical/orthodontic treatment, where most of the time a mandibular advancement is performed. The same can be said for mandibular prognathism.
Not all alveolar prognathism is anomalous, and significant differences can be observed among different ethnic groups.
Harmful habits such as thumb sucking or tongue thrusting can result in or exaggerate an alveolar prognathism, causing teeth to misalign. Functional appliances can be used in growing children to help modify bad habits and neuro-muscular function, with the aim of correcting this condition.
Alveolar prognathism can also easily be corrected with fixed orthodontic therapy. However, relapse is quite common, unless the cause is removed or a long-term retention is used.
All cases reported appear to represent sporadic occurrence. There is no specific inheritance pattern. The male-to-female ratio of affected is 1.8:1 and is often diagnosed before the age of 9. The disorder affects the right and left sides of the maxilla almost equally.
The prevalence has been estimated at 1 in 10,000 births, but exact values are hard to know because some that have the symptoms rarely have Pierre-Robin sequence (without any other associated malformation).
A congenital lip pit or lip sinus is a congenital disorder characterized by the presence of pits and possibly associated fistulas in the lips. They are often hereditary, and may occur alone or in association with cleft lip and palate, termed Van der Woude syndrome.
A large number of human gene defects can cause ectrodactyly. The most common mode of inheritance is autosomal dominant with reduced penetrance, while autosomal recessive and X-linked forms occur more rarely. Ectrodactyly can also be caused by a duplication on 10q24. Detailed studies of a number of mouse models for ectrodactyly have also revealed that a failure to maintain median apical ectodermal ridge (AER) signalling can be the main pathogenic mechanism in triggering this abnormality.
A number of factors make the identification of the genetic defects underlying human ectrodactyly a complicated process: the limited number of families linked to each split hand/foot malformation (SHFM) locus, the large number of morphogens involved in limb development, the complex interactions between these morphogens, the involvement of modifier genes, and the presumed involvement of multiple gene or long-range regulatory elements in some cases of ectrodactyly. In the clinical setting these genetic characteristics can become problematic and making predictions of carrier status and severity of the disease impossible to predict.
In 2011, a novel mutation in DLX5 was found to be involved in SHFM.
Ectrodactyly is frequently seen with other congenital anomalies. Syndromes in which ectrodactyly is associated with other abnormalities can occur when two or more genes are affected by a chromosomal rearrangement. Disorders associated with ectrodactyly include Ectrodactyly-Ectodermal Dysplasia-Clefting (EEC) syndrome, which is closely correlated to the ADULT syndrome and Limb-mammary (LMS) syndrome, Ectrodactyly-Cleft Palate (ECP) syndrome, Ectrodactyly-Ectodermal Dysplasia-Macular Dystrophy syndrome, Ectrodactyly-Fibular Aplasia/Hypoplasia (EFA) syndrome, and Ectrodactyly-Polydactyly. More than 50 syndromes and associations involving ectrodactyly are distinguished in the London Dysmorphology Database.
Ectrodactyly can be caused by various changes to 7q. When 7q is altered by a deletion or a translocation ectrodactyly can sometimes be associated with hearing loss. Ectrodactyly, or Split hand/split foot malformation (SHFM) type 1 is the only form of split hand/ malformation associated with sensorineural hearing loss.
An accessory auricle is considered a developmental anomaly resulting from the persistence of a structure which variably recapitulates the normal external ear.
Why buccal exostoses form is unclear, but it may involve bruxism (tooth clenching and grinding), and genetic factors. Typically they first appear in early adulthood.
Literature states that very few crossbites tend to self-correct which often justify the treatment approach of correcting these bites as early as possible. Only 0–9% of crossbites self-correct. Lindner et al. reported that in a 50% of crossbites were corrected in 76 four year old children.