Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Exposure of spermatozoa to lifestyle, environmental and/or occupational hazards may increase the risk of aneuploidy. Cigarette smoke is a known aneugen (aneuploidy inducing agent). It is associated with increases in aneuploidy ranging from 1.5 to 3.0-fold. Other studies indicate factors such as alcohol consumption, occupational exposure to benzene, and exposure to the insecticides fenvalerate and carbaryl also increase aneuploidy.
About half of all 'marker' chromosomes are idic(15) but idic(15) in itself is one of the rare chromosome abnormalities. Incidence at birth appears to be 1 in 30,000 with a sex ratio of almost 1:1; however, since dysmorphic features are absent or subtle and major malformations are rare, chromosome analysis may not be thought to be indicated, and some individuals, particularly in the older age groups, probably remain undiagnosed. There are organizations for families with idic(15) children that offer extensive information and support.
Human trisomies compatible with live birth, other than Down syndrome (trisomy 21), are Edwards syndrome (trisomy 18) and Patau syndrome (trisomy 13). Complete trisomies of other chromosomes are usually not viable and represent a relatively frequent cause of miscarriage. Only in rare cases of a mosaicism, the presence of a normal cell line, in addition to the trisomic cell line, may support the development of a viable trisomy of the other chromosomes.
More than 80% of children with Patau syndrome die within the first year of life. Children with the mosaic variation are usually affected to a lesser extent. In a retrospective Canadian study of 174 children with trisomy 13, median survival time was 12.5 days. One and ten year survival was 19.8% and 12.9% respectively.
Lujan–Fryns syndrome is a rare X-linked dominant syndrome, and is therefore more common in males than females. Its prevalence within the general population has not yet been determined.
Assisted reproductive technology (ART) is a general term referring to methods used to achieve pregnancy by artificial or partially artificial means. According to the CDC, in general, ART procedures involve surgically removing eggs from a woman's ovaries, combining them with sperm in the laboratory, and returning them to the woman's body or donating them to another woman. ART has been associated with epigenetic syndromes, specifically BWS and Angelman syndrome. Three groups have shown an increased rate of ART conception in children with BWS. A retrospective case control study from Australia found a 1 in 4000 risk of BWS in their in-vitro population, several times higher than the general population. Another study found that children conceived by in vitro fertilisation (IVF) are three to four times more likely to develop the condition. No specific type of ART has been more closely associated with BWS. The mechanism by which ART produces this effect is still under investigation.
Opitz G/BBB Syndrome is a rare genetic condition caused by one of two major types of mutations: MID1 mutation on the short (p) arm of the X chromosome or a mutation of the 22q11.2 gene on the 22nd chromosome. Since it is a genetic disease, it is an inherited condition. However, there is an extremely wide variability in how the disease presents itself.
In terms of prevention, several researchers strongly suggest prenatal testing for at-risk pregnancies if a MID1 mutation has been identified in a family member. Doctors can perform a fetal sex test through chromosome analysis and then screen the DNA for any mutations causing the disease. Knowing that a child may be born with Opitz G/BBB syndrome could help physicians prepare for the child’s needs and the family prepare emotionally. Furthermore, genetic counseling for young adults that are affected, are carriers or are at risk of carrying is strongly suggested, as well (Meroni, Opitz G/BBB syndrome, 2012). Current research suggests that the cause is genetic and no known environmental risk factors have been documented. The only education for prevention suggested is genetic testing for at-risk young adults when a mutation is found or suspected in a family member.
Though the prevalence of Angelman syndrome is not precisely known, there are some estimates. The best data available are from studies of school age children, ages 6–13 years, living in Sweden and from Denmark where the diagnosis of AS children in medical clinics was compared to an 8-year period of about 45,000 births. The Swedish study showed an AS prevalence of about 1/20,000 and the Danish study showed a minimum AS prevalence of about 1/10,000.
Chromosomal deletion syndromes result from deletion of parts of chromosomes. Depending on the location, size, and whom the deletion is inherited from, there are a few known different variations of chromosome deletions. Chromosomal deletion syndromes typically involve larger deletions that are visible using karyotyping techniques. Smaller deletions result in Microdeletion syndrome, which are detected using fluorescence in situ hybridization (FISH)
Examples of chromosomal deletion syndromes include 5p-Deletion (cri du chat syndrome), 4p-Deletion (Wolf-Hirschhorn syndrome), Prader–Willi syndrome, and Angelman syndrome.
At the present time, there is no specific treatment that can undo any chromosomal abnormality, nor the genetic pattern seen in people with idic(15). The extra chromosomal material in those affected was present at or shortly after conception, and its effects on brain development began taking place long before the child was born. Therapies are available to help address many of the symptoms associated with idic(15). Physical, occupational, and speech therapies along with special education techniques can stimulate children with idic(15) to develop to their full potential.
In terms of medical management of the symptoms associated with Chromosome 15q11.2-q13.1 Duplication Syndrome, families should be aware that individuals with chromosome 15 duplications may tolerate medications differently and may be more sensitive to side effects for some classes of medications, such as the serotonin reuptake inhibitor type medications (SSRI).
Thus, these should be used with caution and any new medication should be instituted in a controlled setting, with slow titration of levels and with a clear endpoint as to what the expected outcome for treatment is.
There is an increased risk of sudden, unexpected death among children and adults with this syndrome. The full cause is not yet understood but it is generally attributed to SUDEP (Sudden Unexplained Death in Epilepsy).
Wolf–Hirschhorn syndrome is a microdeletion syndrome caused by a deletion within HSA band 4p16.3 of the short arm of chromosome 4, particularly in the region of and . About 87% of cases represent a "de novo" deletion, while about 13% are inherited from a parent with a chromosome translocation. In the cases of familial translocation, there is a 2 to 1 excess of maternal transmission. Of the "de novo" cases, 80% are paternally derived. Severity of symptoms and expressed phenotype differ based on the amount of genetic material deleted. The critical region for determining the phenotype is at 4p16.3 and can often be detected through genetic testing and fluorescence in situ hybridization (FISH). Genetic testing and genetic counseling is offered to affected families.
Wolf–Hirschhorn syndrome (WHS), also known as chromosome deletion Dillan 4p syndrome, Pitt–Rogers–Danks syndrome (PRDS) or Pitt syndrome, was first described in 1961 by Americans Herbert L. Cooper and Kurt Hirschhorn and, thereafter, gained worldwide attention by publications by the German Ulrich Wolf, and Hirschhorn and their co-workers, specifically their articles in the German scientific magazine "Humangenetik". It is a characteristic phenotype resulting from a partial deletion of chromosomal material of the short arm of chromosome 4 (del(4p16.3)).
A contiguous gene syndrome (CGS), also known as a contiguous gene deletion syndrome is a clinical phenotype caused by a chromosomal abnormality, such as a deletion or duplication that removes several genes lying in close proximity to one another on the chromosome. The combined phenotype of the patient is a combination of what is seen when any individual has disease-causing mutations in any of the individual genes involved in the deletion. While it can be caused by deleted material on a chromosome, it is not, strictly speaking, the same entity as a segmental aneuploidy syndrome. A segmental aneuploidy syndrome is a subtype of CGS that regularly recur, usually due to non-allelic homologous recombination between low copy repeats in the region. Most CGS involve the X chromosome and affect male individuals.
One of the earliest and most famous examples of a CGS involves a male patient with Duchenne muscular dystrophy (DMD), chronic granulomatous disease (CGD), retinitis pigmentosa and intellectual disability. When it was discovered that an X chromosome deletion (specifically Xp21) was the underlying cause of all of these features, researchers were able to use this information to clone the genes responsible for DMD and CGD.
One of those more common CGS involves a deletion on the X chromosome (near Xp21) that encompasses "DMD" (causing Duchenne muscular dystrophy), "NROB1" (causing X-linked adrenal hypoplasia congenita) and "GK" (causing glycerol kinase deficiency). These patients will have all the common features of each individual disease, resulting in a very complex phenotype. Deletions near the distal tip of the p arm of the X chromosome are also a frequent cause of CGS. In addition to the previously described CGS that occur on the X chromosome, two other common syndromes are Langer-Giedion syndrome (caused by deletions of "TRPS1" and "EXT1" on 8q24 and WAGR syndrome (caused by deletions on 11q13 encompassing "PAX6" and "WT1".)
Patau syndrome is the result of trisomy 13, meaning each cell in the body has three copies of chromosome 13 instead of the usual two. A small percentage of cases occur when only some of the body's cells have an extra copy; such cases are called mosaic Patau.
Patau syndrome can also occur when part of chromosome 13 becomes attached to another chromosome (translocated) before or at conception in a Robertsonian translocation. Affected people have two copies of chromosome 13, plus extra material from chromosome 13 attached to another chromosome. With a translocation, the person has a partial trisomy for chromosome 13 and often the physical signs of the syndrome differ from the typical Patau syndrome.
Most cases of Patau syndrome are not inherited, but occur as random events during the formation of reproductive cells (eggs and sperm). An error in cell division called non-disjunction can result in reproductive cells with an abnormal number of chromosomes. For example, an egg or sperm cell may gain an extra copy of the chromosome. If one of these atypical reproductive cells contributes to the genetic makeup of a child, the child will have an extra chromosome 13 in each of the body's cells. Mosaic Patau syndrome is also not inherited. It occurs as a random error during cell division early in fetal development.
Patau syndrome due to a translocation can be inherited. An unaffected person can carry a rearrangement of genetic material between chromosome 13 and another chromosome. This rearrangement is called a balanced translocation because there is no extra material from chromosome 13. Although they do not have signs of Patau syndrome, people who carry this type of balanced translocation are at an increased risk of having children with the condition.
In general, the prognosis is very good. Children with BWS usually do very well and grow up to become the heights expected based on their parents' heights. While children with BWS are at increased risk of childhood cancer, most children with BWS do not develop cancer and the vast majority of children who do develop cancer can be treated successfully.
Children with BWS for the most part had no significant delays when compared to their siblings. However, some children with BWS do have speech problems that could be related to macroglossia or hearing loss.
Advances in treating neonatal complications and premature infants in the last twenty years have significantly improved the true infant mortality rate associated with BWS. In a review of pregnancies that resulted in 304 children with BWS, no neonatal deaths were reported. This is compared to a previously reported mortality rate of 20%. The data from the former study was derived from a BWS registry, a database that may be slightly biased towards involving living children; however, death was not an exclusion criterion to join the registry. This suggests that while infants with BWS are likely to have a higher than normal infant mortality risk, it may not be as high as 20%.
Craniofrontonasal dysplasia is a very rare genetic condition. As such there is little information and no consensus in the published literature regarding the epidemiological statistics.
The incidence values that were reported ranged from 1:100,000 to 1:120,000.
Since the symptoms caused by this disease are present at birth, there is no “cure.” The best cure that scientists are researching is awareness and genetic testing to determine risk factors and increase knowledgeable family planning. Prevention is the only option at this point in time for a cure.
Since the syndrome is caused by a genetic mutation in the individual's DNA, a cure is not available. Treatment of the symptoms and management of the syndrome, however, is possible.
Depending on the manifestation, surgery, increased intake of glucose, special education, occupational therapy, speech therapy, and physical therapy are some methods of managing the syndrome and associated symptoms.
As the syndrome is due to a chromosomal non-disjunction event, the recurrence risk is not high compared to the general population. There has been no evidence found that indicates non-disjunction occurs more often in a particular family.
An individual exhibiting intellectual disability and other symptoms similar to LFS was found to have a terminal deletion of the subtelomeric region in the short arm of chromosome 5. Deletion of this area of chromosome 5 is associated with intellectual disability, psychotic behavior, autism, macrocephaly and hypernasal-like speech, as well as the disorder Cri du chat syndrome. Fryns (2006) suggests a detailed examination of chromosome 5 with FISH should be performed as part of the differential diagnosis of LFS.
Mutations in the "UPF3B" gene, also found on the X chromosome, are another cause of X-linked intellectual disability. "UPF3B" is part of the nonsense-mediated mRNA decay (NMD) complex, which performs mRNA surveillance, detecting mRNA sequences that have been erroneously truncated (shortened) by the presence of nonsense mutations. Mutations in "UPF3B" alter and prevent normal function of the NMD pathway, resulting in translation and expression of truncated mRNA sequences into malfunctioning proteins that can be associated with developmental errors and intellectual disability. Individuals from two families diagnosed with LFS and one family with FGS were found to have mutations in "UPF3B", confirming that the clinical presentations of the different mutations can overlap.
Isodisomy in a non-mendelian trait in humans caused by both copies of a chromosomal set being inherited from the biological mother or the father. It differs from uniparental disomy in that instead of receiving an identical set of chromosomes from one parent, the fertilized ovum contains a complete set of chromosomes from one parent resulting in a complete set of chromosomes from only one parent. This may result in the expression of recessive traits in the offspring. Some authors use the term uniparental disomy and isodisomy interchangeably.
This genetic abnormality can result in the birth of a normal child who has no obvious disability. It is associated with abnormalities in the growth of the offspring and in the placenta.
Its exact cause is unknown, but present research points toward a genetic component, possibly following maternal genes.
It involves hypomethylation of "H19" and "IGF2". In 10% of the cases the syndrome is associated with maternal uniparental disomy (UPD) on chromosome 7. This is an imprinting error where the person receives two copies of chromosome 7 from the mother (maternally inherited) rather than one from each parent.
Like other imprinting disorders (e.g. Prader–Willi syndrome, Angelman syndrome, and Beckwith–Wiedemann syndrome), Silver–Russell syndrome may be associated with the use of assisted reproductive technologies such as in vitro fertilization.
Alpha-thalassemia mental retardation syndrome (ATRX), also called alpha-thalassemia X-linked mental retardation, nondeletion type or ATR-X syndrome, is a condition caused by a mutated gene. Females with this mutated gene have no specific signs or features, but may demonstrate skewed X chromosome inactivation. Hemizygous males tend to be moderately intellectually disabled and have physical characteristics including coarse facial features, microcephaly (small head size), hypertelorism (widely spaced eyes), a depressed nasal bridge, a tented upper lip, and an everted lower lip. Mild or moderate anemia, associated with alpha-thalassemia, is part of the condition.
It is associated with "ATRX".
SGBS is similar to another overgrowth syndrome called Beckwith–Wiedemann syndrome.
SGBS Cells are a unique tool to study the function of Human adipocyte biology. These cells are similar to human primary preadipocytes, and may or may not become a popular model instead of Mouse 3T3-L1 cells to study the secretion and adipokine profile in the future. This cellular tool has been described and developed by Dr. Martin Wabitsch, University of Ulm, Germany.
Raine syndrome (RNS), also called osteosclerotic bone dysplasia, is a rare autosomal recessive congenital disorder characterized by craniofacial anomalies including microcephaly, noticeably low set ears, osteosclerosis, a cleft palate, gum hyperplasia, a hypoplastic nose, and eye proptosis. It is considered to be a lethal disease, and usually leads to death within a few hours of birth. However, a recent report describes two studies in which children with Raine Syndrome have lived to 8 and 11 years old, so it is currently proposed that there is a milder expression that the phenotype can take (Simpson 2009).
It was first characterized in 1989 in a report that was published on an infant that had been born with an unknown syndrome, that later came to be called Raine Syndrome.
The current research describes Raine Syndrome as a neonatal osteosclerotic bone dysplasia, indicated by its osteosclerotic symptoms that are seen in those suffering from the disease. It has been found that a mutation in the gene FAM20C is the cause of the Raine Syndrome phenotype. This microdeletion mutation leads to an unusual chromosome 7 arrangement. The milder phenotypes of Raine Syndrome, such as those described in Simpson’s 2007 report, suggest that Raine Syndrome resulting from missense mutations may not be as lethal as the other described mutations (OMIM). This is supported by findings from Fradin et al. (2011), who reported on children with missense mutations to FAM20C and lived to ages 1 and 4 years, relatively much longer than the life spans of the previously reported children. Simpson et al.’s (2007) report states that to date, effected individuals have had chromosome 7 uniparental isodisomy and a 7p telomeric microdeletion. They had abnormal chromosome 7 arrangements, with microdeletions of their D7S2477 and D7S1484 markers (Simpson 2007).
Raine Syndrome appears to be an autosomal recessive disease. There are reports of recurrence in children born of the same parents, and an increased occurrence in children of closely related, genetically similar parents. Individuals with Raine Syndrome were either homozygous or compound heterozygous for the mutation of FAM20C. Also observed have been nonsynonomous mutation and splice-site changes (Simpson et al. 2007).
FAM20C, located on chromosome 7p22.3, is an important molecule in bone development. Studies in mice have demonstrated its importance in the mineralization of bones in teeth in early development (OMIM, Simpson et al. 2007, Wang et al. 2010). FAM20C stands for “family with sequence similarity 20, member C.” It is also commonly referred to as DMP-4. It is a Golgi-enriched fraction casein kinase and an extracellular serine/threonine protein kinase. It is 107,743 bases long, with 10 exons and 584 amino acids (Weizmann Institute of Science).