Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Factors increasing the risk (to either the woman, the fetus/es, or both) of pregnancy complications beyond the normal level of risk may be present in a woman's medical profile either before she becomes pregnant or during the pregnancy. These pre-existing factors may relate to physical and/or mental health, and/or to social issues, or a combination.
Some common risk factors include:
- Age of either parent
- Adolescent parents
- Older parents
- Exposure to environmental toxins in pregnancy
- Exposure to recreational drugs in pregnancy:
- Ethanol during pregnancy can cause fetal alcohol syndrome and fetal alcohol spectrum disorder.
- Tobacco smoking and pregnancy, when combined, causes twice the risk of premature rupture of membranes, placental abruption and placenta previa. Also, it causes 30% higher odds of the baby being born prematurely.
- Prenatal cocaine exposure is associated with, for example, premature birth, birth defects and attention deficit disorder.
- Prenatal methamphetamine exposure can cause premature birth and congenital abnormalities. Other investigations have revealed short-term neonatal outcomes to include small deficits in infant neurobehavioral function and growth restriction when compared to control infants. Also, prenatal methamphetamine use is believed to have long-term effects in terms of brain development, which may last for many years.
- Cannabis in pregnancy is possibly associated with adverse effects on the child later in life.
- Exposure to Pharmaceutical drugs in pregnancy. Anti-depressants, for example, may increase risks of such outcomes as preterm delivery.
- Ionizing radiation
- Risks arising from previous pregnancies:
- Complications experienced during a previous pregnancy are more likely to recur.
- Many previous pregnancies. Women who have had five previous pregnancies face increased risks of very rapid labor and excessive bleeding after delivery.
- Multiple previous fetuses. Women who have had more than one fetus in a previous pregnancy face increased risk of mislocated placenta.
- Multiple pregnancy, that is, having more than one fetus in a single pregnancy.
- Social and socioeconomic factors. Generally speaking, unmarried women and those in lower socioeconomic groups experience an increased level of risk in pregnancy, due at least in part to lack of access to appropriate prenatal care.
- Unintended pregnancy. Unintended pregnancies preclude preconception care and delays prenatal care. They preclude other preventive care, may disrupt life plans and on average have worse health and psychological outcomes for the mother and, if birth occurs, the child.
- Height. Pregnancy in women whose height is less than 1.5 meters (5 feet) correlates with higher incidences of preterm birth and underweight babies. Also, these women are more likely to have a small pelvis, which can result in such complications during childbirth as shoulder dystocia.
- Weight
- Low weight: Women whose pre-pregnancy weight is less than 45.5 kilograms (100 pounds) are more likely to have underweight babies.
- Obese women are more likely to have very large babies, potentially increasing difficulties in childbirth. Obesity also increases the chances of developing gestational diabetes, high blood pressure, preeclampsia, experiencing postterm pregnancy and/or requiring a cesarean delivery.
- Intercurrent disease in pregnancy, that is, a disease and condition not necessarily directly caused by the pregnancy, such as diabetes mellitus in pregnancy, SLE in pregnancy or thyroid disease in pregnancy.
Advanced maternal age is associated with adverse outcomes in the perinatal period, which may be caused by detrimental effects on decidual and placental development.
The risk of the mother dying before the child becomes an adult increases by more advanced maternal age, such as can be demonstrated by the following data from France in 2007:
Advanced maternal age continues to be associated with a range of adverse pregnancy outcomes including low birth weight, pre-term birth, stillbirth, unexplained fetal death, and increased rates of Caesarean section.
On the other hand, advanced maternal age is associated with a more stable family environment, higher socio-economic position, higher income and better living conditions, as well as better parenting practices, but it is more or less uncertain whether these entities are "effects" of advanced maternal age, are "contributors" to advanced maternal age, or common effects of a certain state such as personality type.
A woman's risk of having a baby with chromosomal abnormalities increases with her age. Down syndrome is the most common chromosomal birth defect, and a woman's risk of having a baby with Down syndrome is:
- At age 20, 1 in 1,441
- At age 25, 1 in 1,383
- At age 30, 1 in 959
- At age 35, 1 in 338
- At age 40, 1 in 84
- At age 45, 1 in 32
- At age 50, 1 in 44
Some disorders and conditions can mean that pregnancy is considered high-risk (about 6-8% of pregnancies in the USA) and in extreme cases may be contraindicated. High-risk pregnancies are the main focus of doctors specialising in maternal-fetal medicine.
Serious pre-existing disorders which can reduce a woman's physical ability to survive pregnancy include a range of congenital defects (that is, conditions with which the woman herself was born, for example, those of the heart or , some of which are listed above) and diseases acquired at any time during the woman's life.
The World Health Organization defines a maternal near-miss case as "a woman who nearly died but survived a complication that occurred during pregnancy, childbirth or within 42 days of termination of pregnancy."
PROM occurring before 37 weeks (PPROM) is one of the leading causes of preterm birth. 30-35% of all preterm births are caused by PPROM. This puts the fetus at risk for the many complications associated with prematurity such as respiratory distress, brain bleeds, infection, necrotizing enterocolitis (death of the fetal bowels), brain injury, muscle dysfunction, and death. Prematurity from any cause leads to 75% of perinatal mortality and about 50% of all long-term morbidity. PROM is responsible for 20% of all fetal deaths between 24 and 34 weeks gestation.
Maternal mortality is a sentinel event to assess the quality of a health care system. The standard indicator is the Maternal Mortality Ratio, defined as the ratio of the number of maternal deaths per 100,000 live births. Due to improved health care the ratio has been declining steadily in developed countries. For example, in the UK 1952-1982 the ratio was halving every 10 years. In the European Union the ratio has now stabilized at around 10 to 20.
The small number of cases makes the evaluation of maternal mortality practically impossible Historically, the study of negative outcomes have been highly successful in preventing their causes, this strategy of prevention therefore faces difficulties when if the number of negative outcome drop to low levels. In the UK, for example, the most dramatic decline in maternal death was achieved in Rochdale, an industrial town in the poorest area of England. In 1928 the town had a Maternal Mortality Ratio of over 900 per 100,000 live births, more than double the national average of the time. An enquiry into the causes of the deaths reduced the ratio to 280 per 100,000 pregnancies by 1934, only six years later, then the lowest in the country.
The very low figures of maternal mortality have therefore stimulated an interest in investigating cases of life-threatening obstetric morbidity or maternal near miss. There are several advantages of investigating near miss events over events with fatal outcome
- near miss are more common than maternal deaths
- their review is likely to yield useful information on the same pathways that lead to severe morbidity and death,
- investigating the care received may be less threatening to providers because the woman survived
- one can learn from the women themselves since they can be interviewed about the care they received.
- all near misses should be interpreted as free lessons and opportunities to improve the quality of service provision
- it is also clear that maternal deaths merely are the tip of the iceberg of maternal disability. For every woman who dies, many more will survive but often suffer from lifelong disabilities.
The growing interest is reflected in an increasing number of systematic reviews on the prevalence of near miss. The studies and reviews span
- analytic attempts to define the concept more strictly,
- descriptive efforts to measure and quantify new indicators (prevalence) of near-miss for different geographical regions etc.
- explanatory efforts of the leading cause for morbidity
Most cases of PROM occur spontaneously, but the risk of PROM in women undergoing a second trimester amniocentesis for prenatal diagnosis of genetic disorders is 1%. Although, no studies are known to account for all cases of PROM that stem from amniocentesis. This case, the chances of the membranes healing on their own and the amniotic fluid returning to normal levels is much higher than spontaneous PROM. Compared to spontaneous PROM, about 70% of women will have normal amniotic fluid levels within one month, and about 90% of babies will survive.
A study by the Agency for Healthcare Research and Quality (AHRQ) found that of the 3.8 million births that occurred in the United States in 2011, approximately 6.1% (231,900) were diagnosed with low birth weight (<2,500 g). Approximately 49,300 newborns (1.3%) weighed less than 1,500 grams (VLBW). Infants born at low birth weight are at a higher risk for developing neonatal infection.
LBW is closely associated with fetal and Perinatal mortality and Morbidity, inhibited growth and cognitive development, and chronic diseases later in life. At the population level, the proportion of babies with a LBW is an indicator of a multifaceted public-health problem that includes long-term maternal malnutrition, ill health, hard work and poor health care in pregnancy. On an individual basis, LBW is an important predictor of newborn health and survival and is associated with higher risk of infant and childhood mortality.
Low birth weight constitutes as sixty to eighty percent of the infant mortality rate in developing countries. Infant mortality due to low birth weight is usually directly causal, stemming from other medical complications such as preterm birth, poor maternal nutritional status, lack of prenatal care, maternal sickness during pregnancy, and an unhygienic home environment. According to an analysis by University of Oregon, reduced brain volume in children is also tied to low birth-weight.
In low-risk pregnancies, the association between cigarette smoking and a reduced risk of pre-eclampsia has been consistent and reproducible across epidemiologic studies. High-risk pregnancies (those with pregestational diabetes, chronic hypertension, history of pre-eclampsia in a previous pregnancy, or multifetal gestation) showed no significant protective effect. The reason for this discrepancy is not definitively known; research supports speculation that the underlying pathology increases the risk of preeclampsia to such a degree that any measurable reduction of risk due to smoking is masked. However, the damaging effects of smoking on overall health and pregnancy outcomes outweighs the benefits in decreasing the incidence of preeclampsia. It is recommended that smoking be stopped prior to, during and after pregnancy.
Studies suggest that marijuana use in the months prior to or during the early stages of pregnancy may interfere with normal placental development and consequently increase the risk of preeclampsia.
There are several misfortunes associated with precipitate delivery for both the mother and the infant. They are classified as maternal and neonatal.
Obese women have an increased risk of pregnancy-related complications, including hypertension, gestational diabetes, and blood clots. Also, the mother is at risk of going into preterm labor. Maternal obesity is also known to be associated with increased rates of complications in late pregnancy such as cesarean delivery, and shoulder dystocia. A meta-analysis estimated that Cesarean delivery rates increased with odds ratios of 1.5 among overweight, 2 among obese, and 3 among severely obese women, compared with normal weight pregnant women. In addition, morbidly obese women who have not had children before are at increased risk of all–cause preterm deliveries. It is well recognized that obese women are at increased risk of preeclampsia and that women who have never been pregnant are at higher risk of preeclampsia than women who have had children in the past.
There is also an increased risk for cardiovascular complications, including hypertension and ischemic heart disease, and kidney disease. Other risks include stroke and venous thromboembolism. It seems pre-eclampsia does not increase the risk of cancer.
Lowered blood supply to the fetus in pre-eclampsia causes lowered nutrient supply, which could result in intrauterine growth restriction (IUGR) and low birth weight. The fetal origins hypothesis states that fetal undernutrition is linked with coronary heart disease later in adult life due to disproportionate growth.
Because preeclampsia leads to a mismatch between the maternal energy supply and fetal energy demands, pre-eclampsia can lead to IUGR in the developing fetus. Infants suffering from IUGR are prone to suffer from poor neuronal development and in increased risk for adult disease according to the Barker hypothesis. Associated adult diseases of the fetus due to IUGR include, but are not limited to, coronary artery disease (CAD), type 2 diabetes mellitus (T2DM), cancer, osteoporosis, and various psychiatric illnesses.
The risk of pre-eclampsia and development of placental dysfunction has also been shown to be recurrent cross-generationally on the maternal side and most likely on the paternal side. Fetuses born to mothers that were born small for gestational age (SGA) were 50% more likely to develop preeclampsia while fetuses born to both SGA parents were three-fold more likely to develop preeclampsia in future pregnancies.
Some women have a greater risk of developing hypertension during pregnancy. These are:
- Women with chronic hypertension (high blood pressure before becoming pregnant).
- Women who developed high blood pressure or preeclampsia during a previous pregnancy, especially if these conditions occurred early in the pregnancy.
- Women who are obese prior to pregnancy.
- Pregnant women under the age of 20 or over the age of 40.
- Women who are pregnant with more than one baby.
- Women with diabetes, kidney disease, rheumatoid arthritis, lupus, or scleroderma.
Researchers from the NIH's National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) conducted a study and found that early-onset paternal obesity is connected with an increased risk of liver disease in their kin. Researchers found that obese fathers had an elevated level of serum alanine aminotransferase (ALT), a liver enzyme, compared to fathers who were not obese. They did a secondary analysis that excluded obese offspring. Children who were a normal weight but had obese fathers still had elevated ALT levels, which indicated that a child's ALT levels are not dependent upon the child's own BMI.
Although the risk of placental abruption cannot be eliminated, it can be reduced. Avoiding tobacco, alcohol and cocaine during pregnancy decreases the risk. Staying away from activities which have a high risk of physical trauma is also important. Women who have high blood pressure or who have had a previous placental abruption and want to conceive must be closely supervised by a doctor.
The risk of placental abruption can be reduced by maintaining a good diet including taking folic acid, regular sleep patterns and correction of pregnancy-induced hypertension.
It is crucial for women to be made aware of the signs of placental abruption, such as vaginal bleeding, and that if they experience such symptoms they must get into contact with their health care provider/the hospital "without any delay".
A longitudinal study done on prenatal stress and gender roles showed that prenatal stress only plays a small part in the gender roles the offspring takes on and mentions it has more to do with older siblings, maternal use of alcohol and/or tobacco, maternal education, and the observance or teaching of “traditional sex roles” from the parents.
Precipitate delivery may cause intracranial hemorrhage resulting from a sudden change in pressure on the fetal head during rapid expulsion.
It may cause aspiration of amniotic fluid, if unattended at or immediately following delivery.
There may be infection as a result of unsterile delivery.
Gestational hypertension is one of the most common disorders seen in human pregnancies. Though relatively benign on its own, in roughly half of the cases of gestational hypertension the disorder progresses into preeclampsia, a dangerous condition that can prove fatal to expectant mothers. However, gestational hypertension is a condition that is fairly rare to see in other animals. For years, it has been the belief of the scientific community that gestational hypertension and preeclampsia were relatively unique to humans, although there has been some recent evidence that other primates can also suffer from similar conditions, albeit due to different underlying mechanisms. The underlying cause of gestational hypertension in humans is commonly believed to be an improperly implanted placenta. Humans have evolved to have a very invasive placenta to facilitate better oxygen transfer from the mother to the fetus, to support the growth of its large brain.
Although many pregnant women with high blood pressure have healthy babies without serious problems, high blood pressure can be dangerous for both the mother and baby. Women with pre-existing, or chronic, high blood pressure are more likely to have certain complications during pregnancy than those with normal blood pressure. However, some women develop high blood pressure while they are pregnant (often called gestational hypertension).
Chronic poorly-controlled high blood pressure before and during pregnancy puts a pregnant woman and her baby at risk for problems. It is associated with an increased risk for maternal complications such as preeclampsia, placental abruption (when the placenta separates from the wall of the uterus), and gestational diabetes. These women also face a higher risk for poor birth outcomes such as preterm delivery, having an infant small for his/her gestational age, and infant death.
Genetics plays a role in having a baby born with LGA. Taller, heavier parents tend to have larger babies. Babies born to an obese mother have greatly increased chances of LGA.
Despite these risks for gestational hypertension, the hemochorial placenta has been favored because of its advantages in the way that it aids in diffusion from mother to fetus later in pregnancy. The bipedal posture that has allowed humans to walk upright has also led to a reduced cardiac output, and it has been suggested that this is what necessitated humans’ aggressive early placental structures. Increased maternal blood pressure can attempt to make up for lower cardiac output, ensuring that the fetus’s growing brain receives enough oxygen and nutrients. The benefits of being able to walk upright and run on land have outweighed the disadvantages that come from bipedalism, including the placental diseases of pregnancy, such as gestational hypertension. Similarly, the advantages of having a large brain size have outweighed the deleterious effects of having a placenta that does not always convert the spiral arteries effectively, leaving humans vulnerable to contracting gestational hypertension. It is speculated that this was not the case with Neanderthals, and that they died out because their cranial capacity increased too much, and their placentae were not equipped to handle the fetal brain development, leading to widespread preeclampsia and maternal and fetal death.
Gestational hypertension in the early stages of pregnancy (trimester 1) has been shown to improve the health of the child both in its first year of life, and its later life. However, when the disease develops later in the pregnancy (subsequent trimesters), or turns into preeclampsia, there begin to be detrimental health effects for the fetus, including low birth-weight. It has been proposed that fetal genes designed to increase the mother’s blood pressure are so beneficial that they outweigh the potential negative effects that can come from preeclampsia. It has also been suggested that gestational hypertension and preeclampsia have remained active traits due to the cultural capacity of humans, and the tendency for midwives or helpers to aid in delivering babies.
Although the definition is imprecise, it occurs in approximately 0.3-1% of vaginal births.
The prognosis of this complication depends on whether treatment is received by the patient, on the quality of treatment, and on the severity of the abruption. Outcomes for the baby also depend on the gestational age.
In the Western world, maternal deaths due to placental abruption are rare. The fetal prognosis is worse than the maternal prognosis; approximately 12% of fetuses affected by placental abruption die. 77% of fetuses that die from placental abruption die before birth; the remainder die due to complications of preterm birth.
Without any form of medical intervention, as often happens in many parts of the world, placental abruption has a high maternal mortality rate.