Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There have been 30 cases of Marden-Walker Syndrome reported since 1966. The first case of this was in 1966 a female infant was diagnosed with blepharophimosis, joint contractures, arachnodactyly and growth development delay. She ended up passing at 3 months due to pneumonia.
Medical conditions include frequent ear infection, hearing loss, hypotonia, developmental problems, respiratory problems, eating difficulties, light sensitivity, and esophageal reflux.
Data on fertility and the development of secondary sex characteristics is relatively sparse. It has been reported that both male and female patients have had children. Males who have reproduced have all had the autosomal dominant form of the disorder; the fertility of those with the recessive variant is unknown.
Researchers have also reported abnormalities in the renal tract of affected patients. Hydronephrosis is a relatively common condition, and researchers have theorized that this may lead to urinary tract infections. In addition, a number of patients have suffered from cystic dysplasia of the kidney.
A number of other conditions are often associated with Robinow syndrome. About 15% of reported patients suffer from congenital heart defects. Though there is no clear pattern, the most common conditions include pulmonary stenosis and atresia. In addition, though intelligence is generally normal, around 15% of patients show developmental delays.
TCS occurs in about one in 50,000 births in Europe. Worldwide, it is estimated to occur in one in 10,000 to one in 50,000 births.
BPES is very rare: only 50-100 cases have been described. It affects slightly more males than females.
The disorder can be associated with a number of psychological symptoms, anxiety, depression, social phobia, body image disorders, and patients may be subjected to discrimination, bullying and name calling especially when young. A multi-disciplinary team and parental support should include these issues.
Worth syndrome is caused by a mutation in the LRP5 gene, located on human chromosome 11q13.4. The disorder is inherited in an autosomal dominant fashion. This indicates that the defective gene responsible for a disorder is located on an autosome (chromosome 11 is an autosome), and only one copy of the defective gene is sufficient to cause the disorder, when inherited from a parent who has the disorder.
SCS is the most common craniosynostosis syndrome and affects 1 in every 25,000 to 50,000 individuals. It occurs in all racial and ethnic groups, and affects males and females equally. If a parent carries a copy of the SCS gene mutation, then there is a 50% chance their child will also carry a copy of the gene mutation, in which case, the child may or may not show signs of SCS. There is also a 50% chance their child will have two working copies of the gene, and would therefore, not have SCS. If both parents carry a single copy of the SCS gene mutation, then there is a 25% chance their child will have two gene mutation copies (so child would develop severe SCS), a 25% chance their child would have two normal copies of the gene (so would be completely normal), and a 50% chance their child would carry one gene mutation copy and 1 normal copy (so child may or may not display SCS). In rare situations, two normal parents can have a child with SCS due to a "de novo" mutation. The exact cause of the "de novo" mutation is unknown, but it doesn't seem to be related to anything that the parents did or didn't do during the pregnancy. SCS due to a "de novo" mutation is so rare that the proportion of past cases is unknown.
Marden–Walker syndrome (MWS) is a rare autosomal recessive congenital disorder. It is characterized by blepharophimosis, microcephaly, micrognathia, multiple joint contractures, arachnodactyly, camptodactyly, kyphoscoliosis, and delayed motor development and is often associated with cystic dysplastic kidneys, dextrocardia, Dandy-Walker malformation, and agenesis of corpus callosum".
While some reports suggest Gordon syndrome may be inherited in an X-linked dominant manner, most agree that it is inherited in an autosomal dominant manner with reduced expressivity and incomplete penetrance in females.
In autosomal dominant inheritance, having only one mutated copy of the disease-causing gene in each cell is sufficient to cause signs and symptoms of the condition. When an individual with an autosomal dominant condition has children, each child has a 50% (1 in 2) risk to inherit the mutated copy of the gene.
If a condition shows variable or reduced expressivity, it means that there can be a range in the nature and severity of signs and symptoms among affected individuals. Incomplete penetrance means that a portion of the individuals who carry the mutated copy of the disease-causing gene will not have any features of the condition.
Genetic studies have linked the autosomal recessive form of the disorder to the "ROR2" gene on position 9 of the long arm of chromosome 9. The gene is responsible for aspects of bone and cartilage growth. This same gene is involved in causing autosomal dominant brachydactyly B.
The autosomal dominant form has been linked to three genes - WNT5A, Segment polarity protein dishevelled homolog DVL-1 (DVL1) and Segment polarity protein dishevelled homolog DVL-3 (DVL3). This form is often caused by new mutations and is generally less severe then the recessive form. Two further genes have been linked to this disorder - Frizzled-2 (FZD2) and Nucleoredoxin (NXN gene). All of these genes belong to the same metabolic pathway - the WNT system. This system is involved in secretion for various compounds both in the fetus and in the adult.
A fetal ultrasound can offer prenatal diagnosis 19 weeks into pregnancy. However, the characteristics of a fetus suffering from the milder dominant form may not always be easy to differentiate from a more serious recessive case. Genetic counseling is an option given the availability of a family history.
Incidence of Crouzon syndrome is currently estimated to occur in 1.6 out of every 100,000 people. There is a greater frequency in families with a history of the disorder, but that doesn't mean that everyone in the family is affected (as referred to above).
Gordon syndrome (GS), or distal arthrogryposis type 3, is a rare, autosomal dominant disorder characterized by cleft palate and congenital contractures of the hands and feet.
Parry–Romberg syndrome appears to occur randomly and for unknown reasons. Prevalence is higher in females than males, with a ratio of roughly 3:2. The condition is observed on the left side of the face about as often as on the right side.
Worth syndrome, also known as benign form of Worth hyperostosis corticalis generalisata with torus platinus, autosomal dominant osteosclerosis, autosomal dominant endosteal hyperostosis or Worth disease, is a rare autosomal dominant congenital disorder that is caused by a mutation in the LRP5 gene. It is characterized by increased bone density and benign bony structures on the palate.
Nager syndrome is thought to be caused by haploinsufficiency of the spliceosomal factor SF3B4.
Ramos-Arroyo syndrome is marked by corneal anesthesia, absence of the peripapillary choriocapillaris and retinal pigment epithelium, bilateral sensorineural hearing loss, unusual facial appearance, persistent ductus arteriosus, Hirschsprung disease, and moderate intellectual disability. It appears to be a distinct autosomal dominant syndrome with variable expressivity.
As of 2008 this syndrome has only been reported in five individuals within three generations of the same family; two young children, their mother, their uncle and their maternal grandmother. This most recent generation to be diagnosed with Ramos-Arroyo syndrome supports the hypothesis that this disease is a distinct autosomal
dominant disorder. If this syndrome could be identified in other families it may help to discriminate the gene responsible.
Until recently, the medical literature did not indicate a connection among many genetic disorders, both genetic syndromes and genetic diseases, that are now being found to be related. As a result of new genetic research, some of these are, in fact, highly related in their root cause despite the widely varying set of medical symptoms that are clinically visible in the disorders. Ellis–van Creveld syndrome is one such disease, part of an emerging class of diseases called ciliopathies. The underlying cause may be a dysfunctional molecular mechanism in the primary cilia structures of the cell, organelles which are present in many cellular types throughout the human body. The cilia defects adversely affect "numerous critical developmental signaling pathways" essential to cellular development and thus offer a plausible hypothesis for the often multi-symptom nature of a large set of syndromes and diseases. Known ciliopathies include primary ciliary dyskinesia, Bardet–Biedl syndrome, polycystic kidney and liver disease, nephronophthisis, Alstrom syndrome, Meckel–Gruber syndrome and some forms of retinal degeneration.
Weyers acrofacial dysostosis is due to another mutation in the EVC gene and hence is allelic with Ellis–van Creveld syndrome.
Autosomal dominant porencephaly type I is rare and its prevalence and incidence are unknown. It affects males and females equally.
This syndrome appears to be inherited in an autosomal dominant fashion.
Molecular analyses suggest that the causative mutations cause a truncation of the protein. These mutations result in the loss of PEST sequence in the protein. This loss is associated with a prolonged half life of the protein.
Mutations in Notch 3 were found to be associated with this syndrome.
It is thought to have an estimated incidence of 1 in 75,000 people.
The fact that some people affected with this disease have circulating antinuclear antibodies in their serum supports the theory that Parry–Romberg syndrome may be an autoimmune disease, specifically a variant of localized scleroderma. Several instances have been reported where more than one member of a family has been affected, prompting speculation of an autosomal dominant inheritance pattern. However, there has also been at least one report of monozygotic twins in which only one of the twins was affected, casting doubt on this theory. Various other theories about the cause and pathogenesis have been suggested, including alterations in the peripheral sympathetic nervous system (perhaps as a result of trauma or infection involving the cervical plexus or the sympathetic trunk), as the literature reported it following sympathectomy, disorders in migration of cranial neural crest cells, or chronic cell-mediated inflammatory process of the blood vessels. It is likely that the disease results from different mechanisms in different people, with all of these factors potentially being involved.
The lateral meningocele syndrome is a very rare skeletal disorder with facial anomalies, hypotonia and meningocele-related neurologic dysfunction.
Ellis–van Creveld syndrome often is the result of founder effects in isolated human populations, such as the Amish and some small island inhabitants. Although relatively rare, this disorder does occur with higher incidence within founder-effect populations due to lack of genetic variability. Observation of the inheritance pattern has illustrated that the disease is autosomal recessive, meaning that both parents have to carry the gene in order for an individual to be affected by the disorder.
Ellis–van Creveld syndrome is caused by a mutation in the "EVC" gene, as well as by a mutation in a nonhomologous gene, "EVC2", located close to the EVC gene in a head-to-head configuration. The gene was identified by positional cloning. The EVC gene maps to the chromosome 4 short arm (4p16). The function of a healthy EVC gene is not well understood at this time.
Acrofrontofacionasal dysostosis is an extremely rare disorder, characterized by intellectual disability, short stature, hypertelorism, broad notched nasal tip, cleft lip/palate, postaxial camptobrachypolysyndactyly, fibular hypoplasia, and anomalies of foot structure.
Zori–Stalker–Williams syndrome, also known as pectus excavatum, macrocephaly, short stature and dysplastic nails, is a rare autosomal dominant congenital disorder associated with a range of features such as pectus excavatum, macrocephaly and dysplastic nails, familial short stature, developmental delay and distinctive facies. Further signs are known to be associated with this syndrome.
The name originates from the researchers who first defined and noticed the syndrome and its clinical signs.
It is believed that the syndrome is inherited in an autosomal dominant pattern, though there has been no new research undertaken for this rare disease.