Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Research is looking into connections between hair loss and other health issues. While there has been speculation about a connection between early-onset male pattern hair loss and heart disease, a review of articles from 1954 to 1999 found no conclusive connection between baldness and coronary artery disease. The dermatologists who conducted the review suggested further study was needed.
Environmental factors are under review. A 2007 study indicated that smoking may be a factor associated with age-related hair loss among Asian men. The study controlled for age and family history, and found statistically significant positive associations between moderate or severe male pattern hairloss and smoking status.
Vertex baldness is associated with an increased risk of coronary heart disease (CHD) and the relationship depends upon the severity of baldness, while frontal baldness is not. Thus, vertex baldness might be a marker of CHD and is more closely associated with atherosclerosis than frontal baldness.
Male pattern hair loss is believed to be due to a combination of genetics and the male hormone dihydrotestosterone. The cause in female pattern hair remains unclear.
Many myths are given regarding the possible causes of baldness and its relationship with one's virility, intelligence, ethnicity, job, social class, wealth, etc. While skepticism may be warranted in many cases due to a lack of scientific validation, some claims may have a degree of underlying truth and are supported by research.
A 50% chance exists for a person to share the same X chromosome as his maternal grandfather. Because women have two X chromosomes, they have two copies of the androgen receptor gene, while men only have one. However, a person with a balding father also has a significantly greater chance of experiencing hair loss.
Because it increases testosterone levels, many Internet forums have put forward the idea that weight training and other forms of exercise increase hair loss in predisposed individuals. Although scientific studies do support a correlation between exercise and testosterone, no direct study has found a link between exercise and baldness. However, a few have found a relationship between a sedentary life and baldness, suggesting some exercise is beneficial. The type or quantity of exercise may influence hair loss.
Testosterone levels are not a good marker of baldness, and many studies actually show paradoxical low testosterone in balding persons, although research on the implications is limited.
Emotional stress has been shown to accelerate baldness in genetically susceptible individuals.
Stress due to sleep deprivation in military recruits lowered testosterone levels, but is not noted to have affected SHBG. Thus, stress due to sleep deprivation in fit males is unlikely to elevate DHT, which is one cause of male pattern baldness. Whether sleep deprivation can cause hair loss by some other mechanism is not clear.
Levels of free testosterone are strongly linked to libido and DHT levels, but unless free testosterone is virtually nonexistent, levels have not been shown to affect virility. Men with androgenic alopecia are more likely to have a higher baseline of free androgens. However, sexual activity is multifactoral, and androgenic profile is not the only determining factor in baldness. Additionally, because hair loss is progressive and free testosterone declines with age, a male's hairline may be more indicative of his past than his present disposition.
Many misconceptions exist about what can help prevent hair loss, one of these being that lack of sexual activity will automatically prevent hair loss. While a proven direct correlation exists between increased frequency of ejaculation and increased levels of DHT, as shown in a recent study by Harvard Medical School, the study suggests that ejaculation frequency may be a sign, rather than a cause, of higher DHT levels. Another study shows that although sexual arousal and masturbation-induced orgasm increase testosterone concentration around orgasm, they reduce testosterone concentration on average (especially before abstinence) and because about 5% of testosterone is converted to DHT, ejaculation does not elevate DHT levels.
The only published study to test correlation between ejaculation frequency and baldness was probably large enough to detect an association (1390 subjects) and found no correlation, although persons with only vertex androgenetic alopecia had had fewer female sexual partners than those of other androgenetic alopecia categories (such as frontal or both frontal and vertex). One study may not be enough, especially in baldness, where there is a complex with age. Marital status has been shown in some studies to influence hair loss in cross-sectional studies (NHANES1).
Certain hair shampoos and ointments visually thicken existing hair, without affecting the growth cycle. There have also been developments in the fashion industry with wig design. The fashion accessory has also been shown to be a source of psychological support for women undergoing chemotherapy, with cancer survivors in one study describing their wig as a "constant companion". Other studies in women have demonstrated a more mixed psychosocial impact of hairpiece use.
Specialized scalp tattoos can mimic the appearance of a short buzzed haircut.
Radiation induces hair loss through damage to hair follicle stem cell progenitors and alteration of keratin expression. Radiation therapy has been associated with increased mucin production in hair follicles.
Studies have suggested electromagnetic radiation as a therapeutic growth stimulant in alopecia.
The condition affects 0.1%–0.2% of the population, and occurs equally in both males and females. Alopecia areata occurs in people who are otherwise healthy and have no other skin disorders. Initial presentation most commonly occurs in the late teenage years, early childhood, or young adulthood, but can happen at any ages. Patients also tend to have a slightly higher incidence of conditions related to the immune system, such as asthma, allergies, atopic dermatitis, and hypothyroidism.
Androgenic alopecia is typically experienced as a "moderately stressful condition that diminishes body image satisfaction". However, although most men regard baldness as an unwanted and distressing experience, they usually are able to cope and retain integrity of personality.
Although baldness is not as common in women as in men, the psychological effects of hair loss tend to be much greater. Typically, the frontal hairline is preserved, but the density of hair is decreased on all areas of the scalp. Previously, it was believed to be caused by testosterone just as in male baldness, but most women who lose hair have normal testosterone levels.
In most cases which begin with a small number of patches of hair loss, hair grows back after a few months to a year. In cases with a greater number of patches, hair can either grow back or progress to alopecia areata totalis or, in rare cases, alopecia areata universalis.
There is no loss of body function, and effects of alopecial areata are mainly psychological (loss of self-image due to hair loss), although these can be severe. Loss of hair also means the scalp burns more easily in the sun. Patients may also have aberrant nail formation because keratin forms both hair and nails.
Hair may grow back and then fall out again later. This may not indicate a recurrence of the condition, but rather a natural cycle of growth-and-shedding from a relatively synchronised start; such a pattern will fade over time. Episodes of alopecia areata before puberty predispose to chronic recurrence of the condition.
Alopecia can be the cause of psychological stress. Because hair loss can lead to significant changes in appearance, individuals with it may experience social phobia, anxiety, and depression.
Hair diseases are disorders primarily associated with the follicles of the hair.
A few examples are
- Alopecia
- Bubble hair deformity
- Hair casts
- Hair loss
- hypertrichosis
- Ingrown hair
- Monilethrix
- Premature greying of hair
- Pattern hair loss
- Trichorrhexis invaginata
Many hair diseases can be associated with distinct underlying disorders.
Piedra are fungal diseases.
Hair disease may refer to excessive shedding or baldness (or both). Balding can be localised or diffuse, scarring or non-scarring. Increased hair can be due to hormonal factors (hirsutism) or non-hormonal (hypertrichosis). Scalp disorders may or may not be associated with hair loss.
Genetic forms of localized autosomal recessive hypotrichosis include:
Hypotrichosis ("" + "" + "") is a condition of abnormal hair patterns, predominantly loss or reduction. It occurs, most frequently, by the growth of vellus hair in areas of the body that normally produce terminal hair. Typically, the individual's hair growth is normal after birth, but shortly thereafter the hair is shed and replaced with sparse, abnormal hair growth. The new hair is typically fine, short and brittle, and may lack pigmentation. Baldness may be present by the time the subject is 25 years old.
Hypotrichosis is a common feature of Hallermann–Streiff syndrome as well as others. It can also be used to describe the lack of hair growth due to chemotherapy.
The opposite of hypotrichosis is hypertrichosis, where terminal hair (thick) grows in areas that would otherwise normally have vellus hair (thin), for example abnormally thick facial hair growth in women.
Actinic keratosis is very common, with an estimated 14% of dermatology visits related to AKs. It is seen more often in fair-skinned individuals, and rates vary with geographical location and age. Other factors such as exposure to ultraviolet (UV) radiation, certain phenotypic features, and immunosuppression can also contribute to the development of AKs.
Men are more likely to develop AK than women, and the risk of developing AK lesions increases with age. These findings have been observed in multiple studies, with numbers from one study suggesting that approximately 5% of women ages 20–29 develop AK compared to 68% of women ages 60–69, and 10% of men ages 20–29 develop AK compared to 79% of men ages 60–69.
Geography seems to play a role in the sense that individuals living in locations where they are exposed to more UV radiation throughout their lifetime have a significantly higher risk of developing AK. Much of the literature on AK comes from Australia, where prevalence of AK is estimated at 40–50% in adults over 40, as compared to the United States and Europe, where prevalence is estimated at under 11–38% in adults. One study found that those who immigrated to Australia after age 20 had fewer AKs than native Australians in all age groups.
Melanin is a pigment in the epidermis that functions to protect keratinocytes from the damage caused by UV radiation; it is found in higher concentration in the epidermis of darker-skinned individuals, affording them protection against the development of AKs. Fair-skinned individuals have a significantly increased risk of developing AKs when compared to olive skinned individuals (odds ratios of 14.1 and 6.5, respectively), and AKs are uncommon in dark-skinned African Americans. Other phenotypic features seen in fair-skinned individuals that are associated with an increased propensity to develop AKs include:
- Freckling
- Light hair color
- Propensity to sunburn
- Inability to tan
Monilethrix is caused by mutations affecting the genes KRTHB1 (KRT81), KRTHB3 (KRT83), or KRTHB6 (KRT86) which code for type II hair cortex keratins. The disorder is inherited in an autosomal dominant manner. This means that the defective gene(s) responsible for the disorder is located on an autosome, and only one copy of the gene is sufficient to cause the disorder, when inherited from a parent who has the disorder.
The presentation may be of alopecia (baldness). Individuals vary in severity of symptoms. Nail deformities may also be present as well as hair follicle keratosis and follicular hyperkeratosis.
The condition affects only those with a Y-chromosome because dihydrotestosterone (DHT) has no known role in development of XX fetuses.
5α-Reductase is an enzyme that converts testosterone to 5α-dihydrotestosterone (DHT) in peripheral tissues. These enzymes also participate in the creation of such neurosteroids as allopregnanolone and THDOC, convert progesterone into dihydroprogesterone (DHP), and convert deoxycorticosterone (DOC) into dihydrodeoxycorticosterone (DHDOC). 5-ARD is biochemically characterized by low to low-normal levels of testosterone and decreased levels of DHT, creating a higher testosterone/DHT ratio.
DHT is a potent androgen, and is necessary for the development of male external genitalia in utero.
A diagnosis of PCOS suggests an increased risk of the following:
- Endometrial hyperplasia and endometrial cancer (cancer of the uterine lining) are possible, due to overaccumulation of uterine lining, and also lack of progesterone resulting in prolonged stimulation of uterine cells by estrogen. It is not clear whether this risk is directly due to the syndrome or from the associated obesity, hyperinsulinemia, and hyperandrogenism.
- Insulin resistance/Type II diabetes. A review published in 2010 concluded that women with PCOS have an elevated prevalence of insulin resistance and type II diabetes, even when controlling for body mass index (BMI). PCOS also makes a woman, particularly if obese, prone to gestational diabetes.
- High blood pressure, in particular if obese or during pregnancy
- Depression and anxiety
- Dyslipidemia – disorders of lipid metabolism — cholesterol and triglycerides. Women with PCOS show a decreased removal of atherosclerosis-inducing remnants, seemingly independent of insulin resistance/Type II diabetes.
- Cardiovascular disease, with a meta-analysis estimating a 2-fold risk of arterial disease for women with PCOS relative to women without PCOS, independent of BMI.
- Strokes
- Weight gain
- Miscarriage
- Sleep apnea, particularly if obesity is present
- Non-alcoholic fatty liver disease, again particularly if obesity is present
- Acanthosis nigricans (patches of darkened skin under the arms, in the groin area, on the back of the neck)
- Autoimmune thyroiditis
Early diagnosis and treatment may reduce the risk of some of these, such as type 2 diabetes and heart disease.
The risk of ovarian cancer and breast cancer is not significantly increased overall.
In order to determine the relative prevalence of different fetishes, scientists obtained a sample of at least 5000 individuals worldwide, in 2007, from 381 Internet discussion groups. The relative prevalences were estimated based on (a) the number of groups devoted to a particular fetish, (b) the number of individuals participating in the groups and (c) the number of messages exchanged. Of the sampled population, 7 percent were sexually aroused by hair (as opposed to 12 for underwear, but only 4 for genitals, 3 for breasts, 2 for buttocks, and less than one for body hair).
The prevalence of PCOS depends on the choice of diagnostic criteria. The World Health Organization estimates that it affects 116 million women worldwide as of 2010 (3.4% of women). One community-based prevalence study using the Rotterdam criteria found that about 18% of women had PCOS, and that 70% of them were previously undiagnosed.
Ultrasonographic findings of polycystic ovaries are found in 8–25% of normal women. 14% women on oral contraceptives are found to have polycystic ovaries. Ovarian cysts are also a common side effect of intrauterine devices (IUDs).
The cat should be taken to a veterinarian. The most suspected cause of skin problems in cats will be fleas. Other causes of over-grooming are not as easily ascertained. As household antiseptics are known to be toxic to cats, veterinary antiseptics for cats can be used to treat open sores, if they do occur. Sores can also be treated with cream, oral or injected anti-inflammatories, however if the problem continues to recur it may be more cost effective to subject the cat to laboratory testing early on. It may be difficult to keep a clean dressing on a cat's belly, and an anti-lick collar is adequate to let the wound heal. If an anti lick collar is used, a soft anti-lick collar is less cumbersome, although they are less durable. If the cat wears a plastic anti-lick collar, it may use the edge of the collar to grind against existing wounds, making them worse. A soft anti lick collar will become less effective as it is kicked out of the shape by the cat's hind leg, and will need prompt replacement. The cat can sanitize the wound if the collar is removed for daily short periods of time, also giving the cat an opportunity for an overall grooming. Scratches and wounds can heal completely using this method. When the cat stops wearing the collar, thinned hair, redness of skin or cracked nipples on the cat are early indicators that the cat has started to over-groom again.
Antidepressants for cats may be suggested by a vet.
The incidence of idiopathic GHD in infants is about 1 in every 3800 live births, and rates in older children are rising as more children survive childhood cancers which are treated with radiotherapy, although exact rates are hard to obtain.
The incidence of genuine adult-onset GHD, normally due to pituitary tumours, is estimated at 10 per million.
Areas affected are those the cat can access most easily, including the abdomen, legs, flank, and chest.
- Baldness, usually beginning with the abdomen
- Obvious over-grooming (although some cats may only engage in the behavior in the absence of owners)
- Redness, rashes, pus, scabs on the bald area or areas traumatized by over-grooming
- A highly irritable cat may even cut its face with the claw of its hind foot if over-zealously scratching the back of its head.
Guttate psoriasis accounts for approximately 2% of psoriasis cases.
Growth hormone deficiency in childhood commonly has no identifiable cause (idiopathic), and adult-onset GHD is commonly due to pituitary tumours and their treatment or to cranial irradiation. A more complete list of causes includes:
- mutations of specific genes (e.g., GHRHR, GH1)
- congenital diseases such as Prader-Willi syndrome, Turner syndrome, or short stature homeobox gene (SHOX) deficiency
- congenital malformations involving the pituitary (e.g., septo-optic dysplasia, posterior pituitary ectopia)
- chronic renal insufficiency
- intracranial tumors in or near the sella turcica, especially craniopharyngioma
- damage to the pituitary from radiation therapy to the head (e.g. for leukemia or brain tumors), from surgery, from trauma, or from intracranial disease (e.g. hydrocephalus)
- autoimmune inflammation (hypophysitis)
- ischemic or hemorrhagic infarction from low blood pressure (Sheehan syndrome) or hemorrhage pituitary apoplexy
There are a variety of rare diseases which resemble GH deficiency, including the childhood growth failure, facial appearance, delayed bone age, and low IGF levels. However, GH testing elicits normal or high levels of GH in the blood, demonstrating that the problem is not due to a deficiency of GH but rather to a reduced sensitivity to its action. Insensitivity to GH is traditionally termed Laron dwarfism, but over the last 15 years many different types of GH resistance have been identified, primarily involving mutations of the GH binding protein or receptors.