Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
Risk factors for osteoporotic fracture can be split between nonmodifiable and (potentially) modifiable. In addition, osteoporosis is a recognized complication of specific diseases and disorders. Medication use is theoretically modifiable, although in many cases, the use of medication that increases osteoporosis risk may be unavoidable.
Caffeine is not a risk factor for osteoporosis.
It is more likely in females than males.
Many diseases and disorders have been associated with osteoporosis. For some, the underlying mechanism influencing the bone metabolism is straightforward, whereas for others the causes are multiple or unknown.
- In general, immobilization causes bone loss (following the 'use it or lose it' rule). For example, localized osteoporosis can occur after prolonged immobilization of a fractured limb in a cast. This is also more common in active people with a high bone turn-over (for example, athletes). Other examples include bone loss during space flight or in people who are bedridden or use wheelchairs for various reasons.
- Hypogonadal states can cause secondary osteoporosis. These include Turner syndrome, Klinefelter syndrome, Kallmann syndrome, anorexia nervosa, andropause, hypothalamic amenorrhea or hyperprolactinemia. In females, the effect of hypogonadism is mediated by estrogen deficiency. It can appear as early menopause (1 year). Bilateral oophorectomy (surgical removal of the ovaries) and premature ovarian failure cause deficient estrogen production. In males, testosterone deficiency is the cause (for example, andropause or after surgical removal of the testes).
- Endocrine disorders that can induce bone loss include Cushing's syndrome, hyperparathyroidism, hyperthyroidism, hypothyroidism, diabetes mellitus type 1 and 2, acromegaly, and adrenal insufficiency.
- Malnutrition, parenteral nutrition and malabsorption can lead to osteoporosis. Nutritional and gastrointestinal disorders that can predispose to osteoporosis include undiagnosed and untreated coeliac disease (both symptomatic and asymptomatic people), Crohn's disease, ulcerative colitis, cystic fibrosis, surgery (after gastrectomy, intestinal bypass surgery or bowel resection) and severe liver disease (especially primary biliary cirrhosis). People with lactose intolerance or milk allergy may develop osteoporosis due to restrictions of calcium-containing foods. Individuals with bulimia can also develop osteoporosis. Those with an otherwise adequate calcium intake can develop osteoporosis due to the inability to absorb calcium and/or vitamin D. Other micronutrients such as vitamin K or vitamin B deficiency may also contribute.
- People with rheumatologic disorders such as rheumatoid arthritis, ankylosing spondylitis, systemic lupus erythematosus and polyarticular juvenile idiopathic arthritis are at increased risk of osteoporosis, either as part of their disease or because of other risk factors (notably corticosteroid therapy). Systemic diseases such as amyloidosis and sarcoidosis can also lead to osteoporosis.
- Renal insufficiency can lead to renal osteodystrophy.
- Hematologic disorders linked to osteoporosis are multiple myeloma and other monoclonal gammopathies, lymphoma, leukemia, mastocytosis, hemophilia, sickle-cell disease and thalassemia.
- Several inherited disorders have been linked to osteoporosis. These include osteogenesis imperfecta, Marfan syndrome, hemochromatosis, hypophosphatasia (for which it is often misdiagnosed), glycogen storage diseases, homocystinuria, Ehlers–Danlos syndrome, porphyria, Menkes' syndrome, epidermolysis bullosa and Gaucher's disease.
- People with scoliosis of unknown cause also have a higher risk of osteoporosis. Bone loss can be a feature of complex regional pain syndrome. It is also more frequent in people with Parkinson's disease and chronic obstructive pulmonary disease.
- People with Parkinson's disease have a higher risk of broken bones. This is related to poor balance and poor bone density. In Parkinson’s disease there may be a link between the loss of dopaminergic neurons and altered calcium metabolism (and iron metabolism) causing a stiffening of the skeleton and kyphosis.
Most of the etiologic considerations regarding senile osteoporosis are not very clear for physicians yet. But based on the current evidence attached to clinical experimentation, it has been determined that the pathogenesis of the disease is clearly related to a deficiency of zinc. Such deficiency is known to lead to an increment of endogenous heparin, which is most likely caused by mast cell degranulation, and an increase in the bone resorption (calcium discharge in the bones) reaction of prostaglandin E2, which constrain the formation of more bone mass, making bones more fragile. These co-factors are shown to play an important role in the pathogenetic process attached to senile osteoporosis as they enhance the action of the parathyroid hormone.
The intake of calcium in elder people is quite low, and this problem is worsened by a reduced capability to ingest it. This, attached to a decrease in the absorption of vitamin D concerning metabolism, are also factors that contributes to a diagnosis of osteoporosis type II.
Even though more studies are necessary for an efficient evaluation of the role played by zinc in senile osteoporosis, doctors recommend a proper supplementation of dietary zinc.
Replacement estrogen has proved to be an efficient way to combat the loss of bone mass in women when such treatment is started in the menopausal stage of their lives. John R. Lee, a Harvard graduate who wrote a book on the subject, came to the conclusion that by adding supplementation with natural progesterone to an existing natural osteoporosis treatment program, bone density was increased every year by 3-5% until it stabilized at the bone density levels expected for a 35-year-old woman, this after studies in 100 women between 38 and 83 with an average of 62 years old.
One person in every 100,000 is affected. Ollier disease is not normally diagnosed until toddler years because it is not very visible.
Ollier disease carries a high risk of skeletal, visceral and brain malignancy which occurs in approximately 25% of patients. Juvenile granulosa cell tumour has been associated with the disease. The incidence of secondary chondrosarcoma in Ollier disease is not known, but may be as high as 25%, pelvis and shoulder girdle being the commonest locations. A related disorder called Maffucci syndrome named after Angelo Maffucci is characterized by enchondromas associated with multiple hemangiomas which usually occur in the hands and feet. Maffucci syndrome carries a higher risk for cancer.
Bone lesions are caused by an imbalance of regulatory factors, characterized by an increased depletion and resorption of old bone tissue and a decrease in bone rebuilding, known as bone remodeling. This imbalance is due to a flooding of regulatory factors released by specific tumors, thus overwhelming the tissue repair system and resulting in these lesions. The over-activity of osteoclasts can also cause hypercalcemia, which can cause damage to the kidneys and requires additional medication and monitoring.
In multiple myeloma, an increased number of myeloma cells block osteoblasts from creating new bone, while these cancerous cells also release factors that cause an upregulation on osteoclasts, causing an increasing in bone tissue resorption and an overall breakdown of bone integrity. This breakdown often begins in the bone marrow near tumor sites and spreads outward to the surface of the implicated bone.
The most common cancers that metastasize to osteolytic lesions are prostate, thyroid, lung and breast, though any cancer can cause bone lesions. Lesions are most often found in larger bones, such as the skull, pelvis, radius, and femur.
Smoking tobacco appears to increase the risk of breast cancer, with the greater the amount smoked and the earlier in life that smoking began, the higher the risk. In those who are long-term smokers, the risk is increased 35% to 50%. A lack of physical activity has been linked to about 10% of cases. Sitting regularly for prolonged periods is associated with higher mortality from breast cancer. The risk is not negated by regular exercise, though it is lowered.
There is an association between use of hormonal birth control and the development of premenopausal breast cancer, but whether oral contraceptives use may actually cause premenopausal breast cancer is a matter of debate. If there is indeed a link, the absolute effect is small. Additionally, it is not clear if the association exists with newer hormonal birth controls. In those with mutations in the breast cancer susceptibility genes "BRCA1" or "BRCA2", or who have a family history of breast cancer, use of modern oral contraceptives does not appear to affect the risk of breast cancer.
The association between breast feeding and breast cancer has not been clearly determined; some studies have found support for an association while others have not. In the 1980s, the abortion–breast cancer hypothesis posited that induced abortion increased the risk of developing breast cancer. This hypothesis was the subject of extensive scientific inquiry, which concluded that neither miscarriages nor abortions are associated with a heightened risk for breast cancer.
A number of dietary factors have been linked to the risk for breast cancer. Dietary factors which may increase risk include a high fat diet, high alcohol intake, and obesity-related high cholesterol levels. Dietary iodine deficiency may also play a role. Evidence for fiber is unclear. A 2015 review found that studies trying to link fiber intake with breast cancer produced mixed results. In 2016 a tentative association between low fiber intake during adolescence and breast cancer was observed.
Other risk factors include radiation and shift-work. A number of chemicals have also been linked, including polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and organic solvents Although the radiation from mammography is a low dose, it is estimated that yearly screening from 40 to 80 years of age will cause approximately 225 cases of fatal breast cancer per million women screened.
Familial dysbetalipoproteinemia or type III hyperlipoproteinemia (also known as remnant hyperlipidemia, "remnant hyperlipoproteinaemia", "broad beta disease" and "remnant removal disease") is a condition characterized by increased total cholesterol and triglyceride levels, and decreased HDL levels.
An osteolytic lesion (from the Greek words for "bone" (ὀστέον), and "to unbind" (λύειν)) is a softened section of a patient's bone formed as a symptom of specific diseases, including breast cancer and multiple myeloma. This softened area appears as a hole on X-ray scans due to decreased bone density. Osteolytic lesions can cause pain, increased risk of bone fracture, and spinal chord compression. These lesions can be treated using biophosphonates or radiation, though new solutions are being tested in clinical trials.
Worth syndrome is caused by a mutation in the LRP5 gene, located on human chromosome 11q13.4. The disorder is inherited in an autosomal dominant fashion. This indicates that the defective gene responsible for a disorder is located on an autosome (chromosome 11 is an autosome), and only one copy of the defective gene is sufficient to cause the disorder, when inherited from a parent who has the disorder.
Treatment usually involves resting the affected foot, taking pain relievers and trying to avoid putting pressure on the foot. In acute cases, the patient is often fitted with a cast that stops below the knee. The cast is usually worn for 6 to 8 weeks. After the cast is taken off, some patients are prescribed arch support for about 6 months. Also, moderate exercise is often beneficial, and physical therapy may help as well.
Prognosis for children with this disease is very good. It may persist for some time, but most cases are resolved within two years of the initial diagnosis. Although in most cases no permanent damage is done, some will have lasting damage to the foot. Also, later in life, Kohler's disease can spread to the hips.
Osteosclerosis is a disorder that is characterized by abnormal hardening of bone and an elevation in bone density. It may predominantly affect the medullary portion and/or cortex of bone. Plain radiographs are a valuable tool for detecting and classifying osteosclerotic disorders. It can manifest in localized or generalized osteosclerosis. Localized osteosclerosis can be caused by Legg–Calvé–Perthes disease, sickle-cell disease and osteoarthritis among others. Osteosclerosis can be classified in accordance with the causative factor into acquired and hereditary.
Signs of familial dysbetaproteinemia include xanthoma striatum palmare (orange or yellow discoloration of the palms) and tuberoeruptive xanthomas over the elbows and knees. The disease leads to premature atherosclerosis and therefore a possible early onset of coronary artery disease and peripheral vascular disease leading to a heart attack, i.e. myocardial infarction, chest pain on exercise, i.e. angina pectoris or stroke in young adults or middle aged patients.
Stress shielding refers to the reduction in bone density (osteopenia) as a result of removal of typical stress from the bone by an implant (for instance, the femoral component of a hip prosthesis). This is because by Wolff's law, bone in a healthy person or animal will remodel in response to the loads it is placed under. Therefore, if the loading on a bone decreases, the bone will become less dense and weaker because there is no stimulus for continued remodeling that is required to maintain bone mass.
There are two types of ESS: "primary" and "secondary".
- Primary ESS happens when a small anatomical defect above the pituitary gland increases pressure in the sella turcica and causes the gland to flatten out along the interior walls of the sella turcica cavity. Primary ESS is associated with obesity and increase in intracranial pressure in women.
- Secondary ESS is the result of the pituitary gland regressing within the cavity after an injury, surgery, or radiation therapy. Individuals with secondary ESS due to destruction of the pituitary gland have symptoms that reflect the loss of pituitary functions, such as intolerance to stress and infection.
Empty sella syndrome (abbreviated ESS) is where the pituitary gland shrinks or becomes flattened, filling the sella turcica with cerebrospinal fluid on imaging instead of the normal pituitary. ESS can be found in the diagnostic workup of pituitary disorders, or as an incidental finding when imaging the brain.
In circumstances where other pathologies are excluded (for example, cancer), a pathologic fracture is diagnostic of osteoporosis irrespective of bone mineral density.
Worth syndrome, also known as benign form of Worth hyperostosis corticalis generalisata with torus platinus, autosomal dominant osteosclerosis, autosomal dominant endosteal hyperostosis or Worth disease, is a rare autosomal dominant congenital disorder that is caused by a mutation in the LRP5 gene. It is characterized by increased bone density and benign bony structures on the palate.
Hypoalphalipoproteinemia is a high-density lipoprotein deficiency, inherited in an autosomal dominant manner.
It can be associated with LDL receptor.
Associated regions and genes include:
Niacin is sometimes prescribed to raise HDL levels.
Risk factors can be divided into two categories:
- "modifiable" risk factors (things that people can change themselves, such as consumption of alcoholic beverages), and
- "fixed" risk factors (things that cannot be changed, such as age and biological sex).
The primary risk factors for breast cancer are being female and older age. Other potential risk factors include genetics, lack of childbearing or lack of breastfeeding, higher levels of certain hormones, certain dietary patterns, and obesity. Recent studies have indicated that exposure to light pollution is a risk factor for the development of breast cancer.
In the animal kingdom there also exists a non-pathological form of osteosclerosis, resulting in unusually solid bone structure with little to no marrow. It is often seen in aquatic vertebrates, especially those living in shallow waters, providing ballast as an adaptation for an aquatic lifestyle. It makes bones heavier, but also more fragile. In those animal groups osteosclerosis often occurs together with bone thickening (pachyostosis). This joint occurrence is called pachyosteosclerosis.
The relative risk of breast cancer based on a median follow-up of 8 years, in a case control study of US registered nurses, is 3.7.
Köhler disease (also spelled "Kohler" and referred to in some texts as Kohler disease I) is a rare bone disorder of the foot found in children between six and nine years of age. The disease typically affects boys, but it can also affect girls. It was first described in 1908 by Alban Köhler (1874–1947), a German radiologist.
It is caused when the navicular bone temporarily loses its blood supply. As a result, tissue in the bone dies and the bone collapses. When treated, it causes no long term problems in most cases although rarely can return in adults. As the navicular bone gets back to normal, symptoms typically abate.
In February 2010, the "Journal of the American Medical Association" reported that the 19-year-old king Tutankhamun may well have died of complications from malaria combined with Köhler disease II.
Pathologic fractures in children and adolescents can result from a diverse array of disorders namely; metabolic, endocrine, neoplastic, infectious, immunologic, and genetic skeletal dysplasias.
- Osteogenesis imperfecta
- Primary hyperparathyroidism
- Simple bone cyst
- Aneurismal bone cyst
- Disuse osteoporosis
- Chronic osteomyelitis
- Osteogenesis imperfecta
- Rickets
- Renal osteodystrophy
- Malignant infantile osteopetrosis
- juvenile osteoporosis
- juvenile rheumatoid arthritis