Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Benign melanocytic tumors of the choroid, such as choroidal freckles and nevi, are very common and pose no health risks, unless they show signs of malignancy, in which case they are considered melanomas. Uveal melanoma is distinct from most skin melanomas associated with ultraviolet exposure; however, it shares several similarities with non-sun-exposed melanomas, such as acral melanomas and mucosal melanomas. BRAF mutations are extremely rare in posterior uveal melanomas; instead, uveal melanomas frequently harbor GNAQ/GNA11 mutations, a trait shared with blue nevi, Nevus of Ota, and Ocular melanosis. As seen in BRAF, mutations in GNAQ/GNA11 are early events in tumorigenesis and are not prognostic for tumor stage or later metastatic spread. In contrast, mutations in the gene BAP1 are strongly linked to metastatic spread and patient survival. Incidence of posterior uveal melanoma is highest among people with light skin and blue eyes. Other risk factors, such as blue light exposure and arc welding have been put forward, but are still debated in the field. Mobile phone use is not a risk factor for uveal melanoma.
The ultraviolet radiation from tanning beds increases the risk of melanoma. The International Agency for Research on Cancer finds that tanning beds are "carcinogenic to humans" and that people who begin using tanning devices before the age of thirty years are 75% more likely to develop melanoma.
Those who work in airplanes also appear to have an increased risk, believed to be due to greater exposure to UV.
Ultraviolet UVB light (wavelengths between 315 – 280 nm) from the sun is absorbed by skin cell DNA and results in a type of direct DNA damage called cyclobutane pyrimidine dimers (CPDs). Thymine-thymine, cytosine-cytosine or cytosine-thymine dimers are formed by the joining of two adjacent pyrimidine bases within a DNA strand. Somewhat similarly to UVB, UVA light (longer wavelengths between 400 – 315 nm) from the sun or from tanning beds can also be directly absorbed by skin DNA (at about 100 to 1000 fold lower efficiency than UVB is absorbed).
Studies suggest that exposure to ultraviolet radiation (UVA and UVB) is one of the major contributors to the development of melanoma. Occasional extreme sun exposure (resulting in "sunburn") is causally related to melanoma. Melanoma is most common on the back in men and on legs in women (areas of intermittent sun exposure). The risk appears to be strongly influenced by socio-economic conditions rather than indoor versus outdoor occupations; it is more common in professional and administrative workers than unskilled workers. Other factors are mutations in or total loss of tumor suppressor genes. Use of sunbeds (with deeply penetrating UVA rays) has been linked to the development of skin cancers, including melanoma.
Possible significant elements in determining risk include the intensity and duration of sun exposure, the age at which sun exposure occurs, and the degree of skin pigmentation. Melanoma rates tend to be highest in countries settled by migrants from northern Europe that have a large amount of direct, intense sunlight that the skin of the settlers is not adapted to, most notably Australia. Exposure during childhood is a more important risk factor than exposure in adulthood. This is seen in migration studies in Australia.
Having multiple severe sunburns increases the likelihood that future sunburns develop into melanoma due to cumulative damage. The sun and tanning beds are the main sources of UV radiation that increase the risk for melanoma and living close to the equator increases exposure to UV radiation.
Melanomas are usually caused by DNA damage resulting from exposure to ultraviolet light from the sun. Genetics also plays a role.
Having more than fifty moles indicates an increased risk melanoma might arise. A weakened immune system makes it easier for cancer to arise due to the body’s weakened ability to fight cancer cells.
The cause of uveal melanoma is unclear. Uveal nevi are common (10% of Caucasians), but rarely progress to melanoma.
A study by You et al. was only able to evaluate the 47 documented cases that have been made to date. According to this study, intraocular schwannomas are more prevalent in females as compared to males with a ratio of 3:1. Additionally, individuals are more likely to present with intraocular schwannomas at a younger age than with uveal melanomas, the most common intraocular tumor. According to the participants evaluated in this study, the average age of occurrence was 37 years old, however, it is important to note that the age range documented represented individuals 9–76 years old.
Lymphoma is the most common type of blood-related cancer in horses and while it can affect horses of all ages, it typically occurs in horses aged 4–11 years.
Ultraviolet light from the sun causes premature aging of the skin and skin damage that can lead to melanoma. Some scientists hypothesize that overexposure to UV, including excessive sunlight, may play a role in the formation of acquired moles. However, more research is needed to determine the complex interaction between genetic makeup and overall exposure to ultraviolet light. Some strong indications that this is so (but falling short of proof), are:
- The relative lack of moles on the buttocks of people with dysplastic nevi.
- Freckles (spots of melanin on the skin, and distinct from moles) are known to be influenced by sunlight.
Studies have found that sunburns and too much time in the sun can increase the risk factors for melanoma. This is "in addition to" those who have dysplastic nevi being at higher risk of this cancer (the uncertainty is in regard to acquiring "benign" moles). To prevent and reduce the risk of melanoma caused by UV radiation, the American Academy of Dermatology and the National Cancer Institute recommends staying out of the sun between 10 a.m. and 4 p.m. standard time (or whenever one's shadow is shorter than one's height). The National Cancer Institute also recommends wearing long sleeves and trousers, hats with a wide brim, sunscreens, and sunglasses that have UV-deflecting lenses.
Risk factors for retinal detachment include severe myopia, retinal tears, trauma, family history, as well as complications from cataract surgery.
Retinal detachment can be mitigated in some cases when the warning signs are caught early. The most effective means of prevention and risk reduction is through education of the initial signs, and encouragement for people to seek ophthalmic medical attention if they have symptoms suggestive of a posterior vitreous detachment. Early examination allows detection of retinal tears which can be treated with laser or cryotherapy. This reduces the risk of retinal detachment in those who have tears from around 1:3 to 1:20. For this reason, the governing bodies in some sports require regular eye examination.
Trauma-related cases of retinal detachment can occur in high-impact sports or in high speed sports. Although some recommend avoiding activities that increase pressure in the eye, including diving and skydiving, there is little evidence to support this recommendation, especially in the general population. Nevertheless, ophthalmologists generally advise people with high degrees of myopia to try to avoid exposure to activities that have the potential for trauma, increase pressure on or within the eye itself, or include rapid acceleration and deceleration, such as bungee jumping or roller coaster rides.
Intraocular pressure spikes occur during any activity accompanied by the Valsalva maneuver, including weightlifting. An epidemiological study suggests that heavy manual lifting at work may be associated with increased risk of rhegmatogenous retinal detachment, but this relationship is not strong. In this study, obesity also appeared to increase the risk of retinal detachment. A high Body Mass Index (BMI) and elevated blood pressure have been identified as a risk factor in non-myopic individuals.
Genetic factors promoting local inflammation and photoreceptor degeneration may also be involved in the development of the disease.
Other risk factors include the following:
- Glaucoma
- AIDS
- Cataract surgery
- Diabetic retinopathy
- Eclampsia
- Family history of retinal detachment
- Homocysteinuria
- Malignant hypertension
- Metastatic cancer, which spreads to the eye (eye cancer)
- Retinoblastoma
- Severe myopia
- Smoking and passive smoking
- Stickler syndrome
- Von Hippel-Lindau disease
Squamous cell carcinoma of eye tissues is one of the most frequent neoplasms of cattle.
Ciliary Body Melanoma is a type of cancer arising from the coloured part (uvea) of the eye.
About 12% of uveal melanoma arise from the ciliary body.
The systemic and ocular prognosis for intraocular schwannoma is positive. While a patient may lose an eye, they are unlikely to encounter metastasized growth or life-threatening malignant change. Although follow-up data has shown the potential need for re-excision and side-effects, these issues are minor and the general outcome for patients is excellent.
Enucleation (surgical removal of the eye) is the treatment of choice for large ciliary body melanomas. Small or medium sized tumors may be treated by an "iridocyclectomy". Radiotherapy may be appropriate in selected cases.
Genes can have an influence on a person's moles.
Dysplastic nevi and atypical mole syndrome are hereditary conditions which causes a person to have a large quantity of moles (often 100 or more) with some larger than normal or atypical. This often leads to a higher risk of melanoma, a serious skin cancer. Dysplastic nevi are more likely than ordinary moles to become cancerous. Dysplastic nevi are common, and many people have a few of these abnormal moles. Having more than 50 ordinary moles increases the risk of developing melanoma.
In the overall population, a slight majority of melanomas do "not" form in an existing mole, but rather create a new growth on the skin. Somewhat surprisingly, this also applies to those with dysplastic nevi. They are at a higher risk of melanoma occurring not only where there is an existing mole, but also where there are none. Such persons need to be checked regularly for any changes in their moles and to note any new ones.
This type of cancer occurs most often in Caucasians between 60 and 80 years of age, and its rate of incidence is about twice as high in males as in females. There are roughly 1,500 new cases of MCC diagnosed each year in the United States, as compared to around 60,000 new cases of melanoma and over 1 million new cases of nonmelanoma skin cancer. MCC is sometimes mistaken for other histological types of cancer, including basal cell carcinoma, squamous cell carcinoma, malignant melanoma, lymphoma, and small cell carcinoma, or as a benign cyst. Researchers believe that exposure to sunlight or ultraviolet light (such as in a tanning bed) may increase the risk of developing this disease. Similar to melanoma, the incidence of MCC in the US is increasing rapidly.
Immunosuppression can profoundly increase the odds of developing Merkel-cell carcinoma. Merkel-cell carcinoma occurs 30 times more often in people with chronic lymphocytic leukemia and 13.4 times more often in people with advanced HIV as compared to the general population; solid organ transplant recipients have a 10-fold increased risk compared to the general population.
Grey horses have a higher susceptibility to melanoma than any other coat color, with up to 80% of grey horses developing some kind of melanoma in their lifetime and some sources state that 66% of those melanomas will become malignant. The grey coat color comes from a gene that is responsible for the gradual depigmentation of the horse’s coat; horses with this gene are born darker and over time, they lose their coat pigmentation. The grey gene is the strongest coat modifier, and will act on any base color. The grey coat color is the result of an autosomal dominant trait that is caused by a 4.6-kb duplication in the 6th intron of the gene syntaxin-17 (STX17). The region of this mutation contains four genes: NR4A3 (nuclear receptor subfamily 4, group A, member 3), STX17, TXNDC4 (thioredoxin domain–containing-4¢) and INVS (inversin). To determine what makes grey horses more susceptible to melanomas, researchers have used different techniques such as the Northern Blot technique and Real-Time PCR. From these studies, it was concluded that the STX17 gene and the NR4A3 gene are both being over expressed in grey horses, which is responsible for the increased incidences of melanoma in horses with the grey gene.
Since 80% of grey horses will develop a melanoma tumor at some point in their lives, it is important to know what kind of treatments are available. There are several treatment options when a horse is found to have a melanoma tumor including surgical or injections:
Ultraviolet radiation from sun exposure is the primary environmental cause of skin cancer. Other risk factors that play a role include:
- Smoking tobacco
- HPV infections increase the risk of squamous-cell skin cancer.
- Some genetic syndromes including congenital melanocytic nevi syndrome which is characterized by the presence of nevi (birthmarks or moles) of varying size which are either present at birth, or appear within 6 months of birth. Nevi larger than 20 mm (3/4") in size are at higher risk for becoming cancerous.
- Chronic non-healing wounds. These are called Marjolin's ulcers based on their appearance, and can develop into squamous-cell skin cancer.
- Ionizing radiation such as X-rays, environmental carcinogens, artificial UV radiation (e.g. tanning beds), aging, and light skin color. It is believed that tanning beds are the cause of hundreds of thousands of basal and squamous-cell skin cancer. The World Health Organization now places people who use artificial tanning beds in its highest risk category for skin cancer. Alcohol consumption, specifically excessive drinking increase the risk of sunburns.
- The use of many immunosuppressive medications increases the risk of skin cancer. Cyclosporin A, a calcineurin inhibitor for example increases the risk approximately 200 times, and azathioprine about 60 times.
The incidence of retinal detachment in otherwise normal eyes is around 5 new cases in 100,000 persons per year. Detachment is more frequent in middle-aged or elderly populations, with rates of around 20 in 100,000 per year. The lifetime risk in normal individuals is about 1 in 300. Asymptomatic retinal breaks are present in about 6% of eyes in both clinical and autopsy studies.
- Retinal detachment is more common in people with severe myopia (above 5–6 diopters), in whom the retina is more thinly stretched. In such patients, lifetime risk rises to 1 in 20. About two-thirds of cases of retinal detachment occur in myopics. Myopic retinal detachment patients tend to be younger than non-myopic ones.
- Retinal detachment is more frequent after surgery for cataracts. The estimated long-term prevalence of retinal detachment after cataract surgery is in the range of 5 to 16 per 1000 cataract operations, but is much higher in patients who are highly myopic, with a prevalence of up to 7% being reported in one study. One study found that the probability of experiencing retinal detachment within 10 years of cataract surgery may be about 5 times higher than in the absence of treatment.
- Tractional retinal detachments can also occur in patients with proliferative diabetic retinopathy or those with proliferative retinopathy of sickle cell disease. In proliferative retinopathy, abnormal blood vessels (neovascularization) grow within the retina and extend into the vitreous. In advanced disease, the vessels can pull the retina away from the back wall of the eye, leading to tractional retinal detachment.
Although retinal detachment usually occurs in just one eye, there is a 15% chance of it developing in the other eye, and this risk increases to 25–30% in patients who have had a retinal detachment and cataracts extracted from both eyes.
Equine melanoma results from abnormal proliferation and accumulation of melanocytes, pigmented cells within the dermis. Gray horses over 6-years-old are especially prone to developing melanoma. The prevalence of melanoma in gray horses over 15 years old has been estimated at 80%. One survey of Camargue-type horses found an overall population prevalence of 31.4%, with prevalence increasing to 67% in horses over 15 years old. Up to 66% of melanomas in gray horses are benign, but melanotic tumors in horses with darker hair-coats may be more aggressive and are more often malignant. One retrospective study of cases sent to a referral hospital reported a 14% prevalence of metastatic melanoma within the study population. However, the actual prevalence of metastatic melanoma may be lower due to infrequent submission of melanotic tumors for diagnosis. Common sites for metastasis include lymph nodes, the liver, spleen, lung, skeletal muscle, blood vessels and parotid salivary gland.
It has been demonstrated that acral lentiginous melanoma has a poorer prognosis compared to that of cutaneous malignant melanoma (CMM).
Predisposing factors for Postoperative PVR are preoperative PVR, aphakia, high levels of vitreous proteins, duration of retinal detachment before corrective surgery, the size of the retinal hole or tear, intra-ocular inflammation, vitreous hemorrhage, and trauma to the eye. An equation to calculate the patient's risk for acquiring PVR is:
1 is added if the risk factor is present and 0 if the risk factor is absent. A patient is at a high risk for developing PVR is the PVR score is >6.33.
Nevi and melanomas are a group of neoplasia.
Although a nevus and a melanoma are often treated as independent entities, there is evidence that a nevus can be a precursor for a melanoma.
Common mutations have been identified in nevi and melanomas.
Therapies for metastatic melanoma include the biologic immunotherapy agents ipilimumab, pembrolizumab, and nivolumab; BRAF inhibitors, such as vemurafenib and dabrafenib; and a MEK inhibitor trametinib.
Cancer prevalence in dogs increases with age and certain breeds are more susceptible to specific kinds of cancers. Millions of dogs develop spontaneous tumors each year. Boxers, Boston Terriers and Golden Retrievers are among the breeds that most commonly develop mast cell tumors. Large and giant breeds, like Great Danes, Rottweilers, Greyhound and Saint Bernards, are much more likely to develop bone cancer than smaller breeds. Lymphoma occurs at increased rates in Bernese Mountain dogs, bulldogs, and boxers. It is important for the owner to be familiar with the diseases to which their specific breed of dog might have a breed predisposition.
Conjunctival Squamous Cell Carcinoma (Conjunctival SCC) and corneal intraepithelial neoplasia comprise what are called Ocular Surface Squamous Cell Neoplasias. SCC is the most common malignancy of the conjunctiva in the US, with a yearly incidence of 1-2.8 per 100,000. Risk factors for the disease are exposure to sun (specifically occupational), exposure to UVB, and light-colored skin. Other risk factors include radiation, smoking, HPV, arsenic, and exposure to polycyclic hydrocarbons.
Conjunctival SCC is often asymptomatic at first, but it can present with the presence of a growth, red eye, pain, itching, burning, tearing, sensitivity to light, double vision, and decreased vision.
Spread of conjunctival SCC can occur in 1-21% of cases, with the first site of spread being the regional lymph nodes. Mortality for conjunctival SCC ranges from 0-8%.
Diagnosis is often made by biopsy, as well as CT (in the case of invasive SCC).
Treatment of Conjunctival SCC is usually surgical excision followed by cryotherapy. After this procedure, Conjunctival SCC can recur 8-40% of the time. Radiation treatment, topical Mitomycin C, and removal of the contents of the orbit, or exenteration, are other methods of treatment. Close follow-up is recommended, because the average time to recurrence is 8–22 months.