Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Links between maternal smoking and TDS are tenuous, but there are stronger associations between maternal alcohol consumption and incidences of cryptorchidism in sons. Smoking does however affect the growth of a fetus, and low birth weight is shown to increase the likelihood of all the disorders encompassed by TDS. Maternal obesity, resulting in gestational diabetes, has also been shown to be a risk factor for impaired testes development and TDS symptoms in sons.
There is increasing evidence that the harmful products of tobacco smoking may damage the testicles and kill sperm, but their effect on male fertility is not clear. Some governments require manufacturers to put warnings on packets. Smoking tobacco increases intake of cadmium, because the tobacco plant absorbs the metal. Cadmium, being chemically similar to zinc, may replace zinc in the DNA polymerase, which plays a critical role in sperm production. Zinc replaced by cadmium in DNA polymerase can be particularly damaging to the testes.
Pre-testicular factors refer to conditions that impede adequate support of the testes and include situations of poor hormonal support and poor general health including:
- Hypogonadotropic hypogonadism due to various causes
- Obesity increases the risk of hypogonadotropic hypogonadism. Animal models indicate that obesity causes leptin insensitivity in the hypothalamus, leading to decreased Kiss1 expression, which, in turn, alters the release of gonadotropin-releasing hormone (GnRH).
- Undiagnosed and untreated coeliac disease (CD). Coeliac men may have reversible infertility. Nevertheless, CD can present with several non-gastrointestinal symptoms that can involve nearly any organ system, even in the absence of gastrointestinal symptoms. Thus, the diagnosis may be missed, leading to a risk of long-term complications. In men, CD can reduce semen quality and cause immature secondary sex characteristics, hypogonadism and hyperprolactinaemia, which causes impotence and loss of libido. The giving of gluten free diet and correction of deficient dietary elements can lead to a return of fertility. It is likely that an effective evaluation for infertility would best include assessment for underlying celiac disease, both in men and women.
- Drugs, alcohol
- Strenuous riding (bicycle riding, horseback riding)
- Medications, including those that affect spermatogenesis such as chemotherapy, anabolic steroids, cimetidine, spironolactone; those that decrease FSH levels such as phenytoin; those that decrease sperm motility such as sulfasalazine and nitrofurantoin
- Genetic abnormalities such as a Robertsonian translocation
Twelve percent of all infertility cases are a result of a woman either being underweight or overweight. Fat cells produce estrogen, in addition to the primary sex organs. Too much body fat causes production of too much estrogen and the body begins to react as if it is on birth control, limiting the odds of getting pregnant. Too little body fat causes insufficient production of estrogen and disruption of the menstrual cycle. Both under and overweight women have irregular cycles in which ovulation does not occur or is inadequate. Proper nutrition in early life is also a major factor for later fertility.
A study in the US indicated that approximately 20% of infertile women had a past or current eating disorder, which is five times higher than the general lifetime prevalence rate.
A review from 2010 concluded that overweight and obese subfertile women have a reduced probability of successful fertility treatment and their pregnancies are associated with more complications and higher costs. In hypothetical groups of 1000 women undergoing fertility care, the study counted approximately 800 live births for normal weight and 690 live births for overweight and obese anovulatory women. For ovulatory women, the study counted approximately 700 live births for normal weight, 550 live births for overweight and 530 live births for obese women. The increase in cost per live birth in anovulatory overweight and obese women were, respectively, 54 and 100% higher than their normal weight counterparts, for ovulatory women they were 44 and 70% higher, respectively.
According to the American Society for Reproductive Medicine (ASRM), Age, Smoking, Sexually Transmitted Infections, and Being Overweight or Underweight can all affect fertility.
In broad sense, acquired factors practically include any factor that is not based on a genetic mutation, including any intrauterine exposure to toxins during fetal development, which may present as infertility many years later as an adult.
Factors that can cause male as well as female infertility are:
- DNA damage
- DNA damage reduces fertility in female ovocytes, as caused by smoking, other xenobiotic DNA damaging agents (such as radiation or chemotherapy) or accumulation of the oxidative DNA damage 8-hydroxy-deoxyguanosine
- DNA damage reduces fertility in male sperm, as caused by oxidative DNA damage, smoking, other xenobiotic DNA damaging agents (such as drugs or chemotherapy) or other DNA damaging agents including reactive oxygen species, fever or high testicular temperature
- General factors
- Diabetes mellitus, thyroid disorders, undiagnosed and untreated coeliac disease, adrenal disease
- Hypothalamic-pituitary factors
- Hyperprolactinemia
- Hypopituitarism
- The presence of anti-thyroid antibodies is associated with an increased risk of unexplained subfertility with an odds ratio of 1.5 and 95% confidence interval of 1.1–2.0.
- Environmental factors
- Toxins such as glues, volatile organic solvents or silicones, physical agents, chemical dusts, and pesticides. Tobacco smokers are 60% more likely to be infertile than non-smokers.
German scientists have reported that a virus called Adeno-associated virus might have a role in male infertility, though it is otherwise not harmful. Other diseases such as chlamydia, and gonorrhea can also cause infertility, due to internal scarring (fallopian tube obstruction).
The human breast cancer susceptibility gene 2 (BRCA2) is employed in homologous recombinational repair of DNA damages during meiosis. A common single-nucleotide polymorphism of BRCA2 is associated with severe oligospermia.
Men with mild oligospermia (semen concentration of 15 million to 20 million sperm/ml) were studied for an association of sperm DNA damage with life style factors. A significant association was found between sperm DNA damage and factors such as age, obesity and occupational stress.
Exposure of a male fetus to substances that disrupt hormone systems, particularly chemicals that inhibit the action of androgens (male sex hormones) during the development of the reproductive system, has been shown to cause many of the characteristic TDS disorders. These include environmental estrogens and anti-androgens found in food and water sources that have been contaminated with synthetic hormones and pesticides used in agriculture. In historical cases, medicines given to pregnant women, like diethylstilbestrol (DES), have caused many of the features of TDS in fetuses exposed to this chemical during gestation. The impact of environmental chemicals is well documented in animal models. If a substance affects Sertoli and Leydig cell differentiation (a common feature of TDS disorders) at an early developmental stage, germ cell growth and testosterone production will be impaired. These processes are essential for testes descent and genitalia development, meaning that genital abnormalities like cryptorchidism or hypospadias may be present from birth, and fertility problems and TGCC become apparent during adult life. Severity or number of disorders may therefore be dependent on the timing of the environmental exposure. Environmental factors can act directly, or via epigenetic mechanisms, and it is likely that a genetic susceptibility augmented by environmental factors is the primary cause of TDS.
In about 30% of infertile men no causative factor is found for their decrease in sperm concentration or quality by common clinical, instrumental, or laboratory means, and the condition is termed "idiopathic" (unexplained). A number of factors may be involved in the genesis of this condition, including age, infectious agents ( such as "Chlamydia trachomatis"), Y chromosome microdeletions, mitochondrial changes, environmental pollutants, and "subtle" hormonal changes.
A review in 2013 came to the result that oligospermia and azoospermia are significantly associated with being overweight (odds ratio 1.1), obese (odds ratio 1.3) and morbidly obese (odds ratio 2.0), but the cause of this is unknown. It found no significant relation between oligospermia and being underweight.
Prevalence of infertility varies depending on the definition, i.e. on the time span involved in the failure to conceive.
- Infertility rates have increased by 4% since the 1980s, mostly from problems with fecundity due to an increase in age.
- Fertility problems affect one in seven couples in the UK. Most couples (about 84%) who have regular sexual intercourse (that is, every two to three days) and who do not use contraception get pregnant within a year. About 92 out of 100 couples who are trying to get pregnant do so within two years.
- Women become less fertile as they get older. For women aged 35, about 94% who have regular unprotected sexual intercourse get pregnant after three years of trying. For women aged 38, however, only about 77%. The effect of age upon men's fertility is less clear.
- In people going forward for IVF in the UK, roughly half of fertility problems with a diagnosed cause are due to problems with the man, and about half due to problems with the woman. However, about one in five cases of infertility has no clear diagnosed cause.
- In Britain, male factor infertility accounts for 25% of infertile couples, while 25% remain unexplained. 50% are female causes with 25% being due to anovulation and 25% tubal problems/other.
- In Sweden, approximately 10% of couples wanting children are infertile. In approximately one third of these cases the man is the factor, in one third the woman is the factor, and in the remaining third the infertility is a product of factors on both parts.
Idiopathic azoospermia is where there is no known cause of the condition. It may be a result of multiple risk factors, such as age and weight. For example, a review in 2013 came to the result that oligospermia and azoospermia are significantly associated with being overweight (odds ratio 1.1), obese (odds ratio 1.3) and morbidly obese (odds ratio 2.0), but the cause of this is unknown. The review found no significant relation between oligospermia and being underweight.
Prognosis in unexplained infertility depends on many factors, but can roughly be estimated by e.g. the
Hunault model, which takes into account female age, duration of infertility/subfertility, infertility/subfertility being primary or secondary, percentage of motile sperm and being referred by a general practitioner or gynecologist.
In posttesticular azoospermia sperm are produced but not ejaculated, a condition that affects 7–51% of azoospermic men. The main cause is a physical obstruction (obstructive azoospermia) of the posttesticular genital tracts. The most common reason is a vasectomy done to induce contraceptive sterility. Other obstructions can be congenital (example agenesis of the vas deferens as seen in certain cases of cystic fibrosis) or acquired, such as ejaculatory duct obstruction for instance by infection.
Ejaculatory disorders include retrograde ejaculation and anejaculation; in these conditions sperm are produced but not expelled.
Individuals with CAIS are raised as females. They are born phenotypically female and almost always have a heterosexual female gender identity; the incidence of homosexuality in women with CAIS is thought to be less than unaffected women. However, at least two case studies have reported male gender identity in individuals with CAIS.
Challenges presented to people affected by this condition include: psychologically coming to terms with the condition, difficulties with sexual function, infertility. Long-term studies indicate that with appropriate medical and psychological treatment, women with CAIS can be satisfied with their sexual function and psychosexual development. CAIS women can lead active lives and expect a normal lifespan.
Approximately 1 in 20,000 individuals with a male appearance have 46,XX testicular disorder.
Gonadectomy at time of diagnosis is the current recommendation for PAIS if presenting with cryptorchidism, due to the high (50%) risk of germ cell malignancy. The risk of malignancy when testes are located intrascrotally is unknown; the current recommendation is to biopsy the testes at puberty, allowing investigation of at least 30 seminiferous tubules, with diagnosis preferably based on OCT3/4 immunohistochemistry, followed by regular examinations. Hormone replacement therapy is required after gonadectomy, and should be modulated over time to replicate the hormone levels naturally present in the body during the various stages of puberty. Artificially induced puberty results in the same, normal development of secondary sexual characteristics, growth spurt, and bone mineral accumulation. Women with PAIS may have a tendency towards bone mineralization deficiency, although this increase is thought to be less than is typically seen in CAIS, and is similarly managed.
In about 80 percent of individuals with 46,XX testicular disorder of sex development, the condition results from an abnormal exchange of genetic material between chromosomes (translocation). This exchange occurs as a random event during the formation of sperm cells in the affected person's father. The translocation causes the SRY gene to be misplaced, almost always onto an X chromosome. If a fetus is conceived from a sperm cell with an X chromosome bearing the SRY gene, it will develop as a male despite not having a Y chromosome. This form of the condition is called SRY-positive 46,XX testicular disorder of sex development.
About 20 percent of those with 46 XX testicular disorder of sex development do not have the SRY gene. This form of the condition is called SRY-negative 46,XX testicular disorder of sex development. The cause of the disorder in these individuals is often unknown, although changes affecting other genes have been identified. Individuals with SRY-negative 46,XX testicular disorder of sex development are more likely to have ambiguous genitalia than are people with the SRY-positive form.
The observation has been made many times that globozoospermia arises in siblings which points towards an underlying genetic cause. Recent progress has been made into determining what genes could be implicated in this pathology, with the previously mentioned genes being found to play a role. There are more genes which have been shown to be mutated in globozoospermia in mice, but these are yet to be connected to the human disease process. Examples of these include Gopc, Hrb and Csnka2. There are thousands of genes which guide the process of spermatogenesis, and knowing how they’re involved in globozoospermia is an important current area of research.
Reversal of symptoms have been reported in between 15% to 22% of cases. The causes of this reversal are still under investigation but have been reported in both males and females.
Reversal appears to be associated with 14 of the known gene defects linked to KS/CHH. The study suggests no obvious gene defect showing a tendency to allow reversal. There is a suggestion that the TAC3 and TACR3 mutations might allow for a slightly higher chance of reversal, but the numbers involved are too low to confirm this. The ANOS1 mutations appear to be least likely to allow reversal with to date only one recorded instance in medical literature. Even male patients who previous had micro-phallus or cryptorchidism have been shown to undergo reversal of symptoms.
The reversal might not be permanent and remission can occur at any stage; the paper suggests that this could be linked to stress levels. The paper highlighted a reversal case that went into remission but subsequently achieved reversal again, strongly suggesting an environmental link.
Reversal cases have been seen in cases of both KS and normosmic CHH but appear to be less common in cases of KS (where the sense of smell is also affected). A paper published in 2016 agreed with the theory that there is a strong environmental or epigenetic link to the reversal cases. The precise mechanism of reversal is unclear and is an area of active research.
Reversal would be apparent if testicular development was seen in men while on testosterone therapy alone or in women who menstruate or achieved pregnancy while on no treatment. To date there have been no recorded cases of the reversal of anosmia found in Kallmann syndrome cases.
Sperm DNA fragmentation level is higher in men with sperm motility defects (asthenozoospermia) than in men with oligozoospermia or teratozoospermia. Among men with asthenozoospermia, 31% were found to have high levels of DNA fragmentation. As reviewed by Wright et al., high levels of DNA fragmentation have been shown to be a robust indicator of male infertility.
In the US, up to 25% of infertile couples have unexplained infertility.
Management of AIS is currently limited to symptomatic management; methods to correct a malfunctioning androgen receptor protein that result from an AR gene mutation are not currently available. Areas of management include sex assignment, genitoplasty, gonadectomy in relation to tumor risk, hormone replacement therapy, and genetic and psychological counseling.
A study of a population of French women from 1670 and 1789 shows that those who married at age 20–24 had 7.0 children on average and 3.7% remained childless. Women who married at age 25–29 years had a mean of 5.7 children and 5.0% remained childless. Women who married at 30–34 years had a mean of 4.0 children and 8.2% remained childless. The average age at last birth in natural fertility populations that have been studied is around 40.
In 1957, a study was done on a large population (American Hutterites) that never used birth control. The investigators measured the relationship between the age of the female partner and fertility. (Infertility rates today are believed to be higher in the general population than for the population in this study from the 1950s.)
This 1957 study found that:
- By age 30, 7% of couples were infertile
- By age 35, 11% of couples were infertile
- By age 40, 33% of couples were infertile
- At age 45, 87% of couples were infertile
Nuclear receptor subfamily 5 group A member 1 (NR5A1), also known as SF1 or Ad4BP (MIM 184757), is located on the long arm of chromosome 9 (9q33.3). The NR5A1 is an orphan nuclear receptor that was first identified following the search for a common regulator of the cytochrome P450 steroid hydroxylase enzyme family. This receptor is a pivotal transcriptional regulator of an array of genes involved in reproduction, steroidogenesis and male sexual differentiation and also plays a crucial role in adrenal gland formation in both sexes. NR5A1 regulates the mullerian inhibitory substance by binding to a conserved upstream regulatory element and directly participates in the process of mammalian sex determination through mullerian duct regression. Targeted disruption of NR5A1 (Ftzf1) in mice results in gonadal and adrenal agenesis, persistence of Mullerian structures and abnormalities of the hypothalamus and pituitary gonadotropes. Heterozygous animals demonstrate a milder phenotype including an impaired adrenal stress response and reduced testicular size. In humans, NR5A1 mutations were first described in patients with 46, XY karyotype and disorders of sex development (DSD), Mullerian structures and primary adrenal failure (MIM 612965). After that, heterozygous NR5A1 mutations were described in seven patients showing 46, XY karyotype and ambiguous genitalia, gonadal dysgenesis, but no adrenal insufficiency. Since then, studies have confirmed that mutations in NR5A1 in patients with 46, XY karyotype cause severe underandrogenisation, but no adrenal insufficiency, establishing dynamic and dosage-dependent actions for NR5A1. Subsequent studies revealed that NR5A1 heterozygous mutations cause primary ovarian insufficiency (MIM 612964).