Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Risk factors for retinal detachment include severe myopia, retinal tears, trauma, family history, as well as complications from cataract surgery.
Retinal detachment can be mitigated in some cases when the warning signs are caught early. The most effective means of prevention and risk reduction is through education of the initial signs, and encouragement for people to seek ophthalmic medical attention if they have symptoms suggestive of a posterior vitreous detachment. Early examination allows detection of retinal tears which can be treated with laser or cryotherapy. This reduces the risk of retinal detachment in those who have tears from around 1:3 to 1:20. For this reason, the governing bodies in some sports require regular eye examination.
Trauma-related cases of retinal detachment can occur in high-impact sports or in high speed sports. Although some recommend avoiding activities that increase pressure in the eye, including diving and skydiving, there is little evidence to support this recommendation, especially in the general population. Nevertheless, ophthalmologists generally advise people with high degrees of myopia to try to avoid exposure to activities that have the potential for trauma, increase pressure on or within the eye itself, or include rapid acceleration and deceleration, such as bungee jumping or roller coaster rides.
Intraocular pressure spikes occur during any activity accompanied by the Valsalva maneuver, including weightlifting. An epidemiological study suggests that heavy manual lifting at work may be associated with increased risk of rhegmatogenous retinal detachment, but this relationship is not strong. In this study, obesity also appeared to increase the risk of retinal detachment. A high Body Mass Index (BMI) and elevated blood pressure have been identified as a risk factor in non-myopic individuals.
Genetic factors promoting local inflammation and photoreceptor degeneration may also be involved in the development of the disease.
Other risk factors include the following:
- Glaucoma
- AIDS
- Cataract surgery
- Diabetic retinopathy
- Eclampsia
- Family history of retinal detachment
- Homocysteinuria
- Malignant hypertension
- Metastatic cancer, which spreads to the eye (eye cancer)
- Retinoblastoma
- Severe myopia
- Smoking and passive smoking
- Stickler syndrome
- Von Hippel-Lindau disease
The incidence of retinal detachment in otherwise normal eyes is around 5 new cases in 100,000 persons per year. Detachment is more frequent in middle-aged or elderly populations, with rates of around 20 in 100,000 per year. The lifetime risk in normal individuals is about 1 in 300. Asymptomatic retinal breaks are present in about 6% of eyes in both clinical and autopsy studies.
- Retinal detachment is more common in people with severe myopia (above 5–6 diopters), in whom the retina is more thinly stretched. In such patients, lifetime risk rises to 1 in 20. About two-thirds of cases of retinal detachment occur in myopics. Myopic retinal detachment patients tend to be younger than non-myopic ones.
- Retinal detachment is more frequent after surgery for cataracts. The estimated long-term prevalence of retinal detachment after cataract surgery is in the range of 5 to 16 per 1000 cataract operations, but is much higher in patients who are highly myopic, with a prevalence of up to 7% being reported in one study. One study found that the probability of experiencing retinal detachment within 10 years of cataract surgery may be about 5 times higher than in the absence of treatment.
- Tractional retinal detachments can also occur in patients with proliferative diabetic retinopathy or those with proliferative retinopathy of sickle cell disease. In proliferative retinopathy, abnormal blood vessels (neovascularization) grow within the retina and extend into the vitreous. In advanced disease, the vessels can pull the retina away from the back wall of the eye, leading to tractional retinal detachment.
Although retinal detachment usually occurs in just one eye, there is a 15% chance of it developing in the other eye, and this risk increases to 25–30% in patients who have had a retinal detachment and cataracts extracted from both eyes.
Low vitamin C intake and serum levels have been associated with greater cataract rates. However, use of supplements of vitamin C has not demonstrated benefit.
Macular degeneration is a condition affecting the tissues lying under the retina, while a macular hole involves damage from within the eye, at the junction between the vitreous and the retina itself. There is no relationship between the two diseases. Depending upon the degree of attachment or traction between the vitreous and the retina, there may be risk of developing a macular hole in the other eye. In those cases where the vitreous has already become separated from the retinal surface, there is very little chance of developing a macular hole in the other eye. On the other hand, when the vitreous remains adherent and pulling on the macular region in both eyes, then there may be a greater risk of developing a hole in the second eye. In very rare instances, trauma or other conditions lead to the development of a macular hole. In the vast majority of cases, however, macular holes develop spontaneously. As a result, there is no known way to prevent their development through any nutritional or chemical means, nor is there any way to know who is at risk for developing a hole prior to its appearance in one or both eyes.
Cigarette smoking has been shown to double the rate of nuclear sclerotic cataracts and triple the rate of posterior subcapsular cataracts. Evidence is conflicting over the effect of alcohol. Some surveys have shown a link, but others which followed people over longer terms have not.
This ocular pathology was first described by Iwanoff in 1865, and it has been shown to occur in about 7% of the population. It can occur more frequently in the older population with postmortem studies showing it in 2% of those aged 50 years and 20% in those aged 75 years.
There is no good evidence for any preventive actions, since it appears this is a natural response to aging changes in the vitreous. Posterior vitreous detachment (PVD) has been estimated to occur in over 75 per cent of the population over age 65, that PVD is essentially a harmless condition (although with some disturbing symptoms), and that it does not normally threaten sight. However, since epiretinal membrane appears to be a protective response to PVD, where inflammation, exudative fluid, and scar tissue is formed, it is possible that NSAIDs may reduce the inflammation response. Usually there are flashing light experiences and the emergence of floaters in the eye that herald changes in the vitreous before the epiretinal membrane forms g
Optic pits occur equally between men and women. They are seen in roughly 1 in 10,000 eyes, and approximately 85% of optic pits are found to be unilateral (i.e. in only one eye of any affected individual). About 70% are found on the temporal side (or lateral one-half) of the optic disc. Another 20% are found centrally, while the remaining pits are located either superiorly (in the upper one-half), inferiorly (in the lower one-half), or nasally (in the medial one-half towards the nose).
No particular risk factors have been conclusively identified; however, there have been a few reports that demonstrate an autosomal dominant pattern of inheritance in some families. Therefore, a family history of optic pits may be a possible risk factor.
Age-related macular degeneration accounts for more than 54% of all vision loss in the white population in the USA. An estimated 8 million Americans are affected with early age-related macular degeneration, of whom over 1 million will develop advanced age-related macular degeneration within the next 5 years. In the UK, age-related macular degeneration is the cause of blindness in almost 42% of those who go blind aged 65–74 years, almost two-thirds of those aged 75–84 years, and almost three-quarters of those aged 85 years or older.
Macular degeneration is more likely to be found in Caucasians than in people of African descent.
The eye contains a jelly-like substance called the vitreous. Shrinking of the vitreous usually causes the hole. As a person ages, the vitreous becomes watery and begins to pull away from the retina. If the vitreous is firmly attached to the retina when it pulls away, a hole can result.
Vitreomacular adhesion (VMA) is a human medical condition where the vitreous gel (or simply vitreous) of the human eye adheres to the retina in an abnormally strong manner. As the eye ages, it is common for the vitreous to separate from the retina. But if this separation is not complete, i.e. there is still an adhesion, this can create pulling forces on the retina that may result in subsequent loss or distortion of vision. The adhesion in of itself is not dangerous, but the resulting pathological vitreomacular traction (VMT) can cause severe ocular damage.
The current standard of care for treating these adhesions is pars plana vitrectomy (PPV), which involves surgically removing the vitreous from the eye. A biological agent for non-invasive treatment of adhesions called ocriplasmin has been approved by the FDA on Oct 17 2012.
The causes of macular edema are numerous and different causes may be inter-related.
- It is commonly associated with diabetes. Chronic or uncontrolled diabetes type 2 can affect peripheral blood vessels including those of the retina which may leak fluid, blood and occasionally fats into the retina causing it to swell.
- Age-related macular degeneration may cause macular edema. As individuals age there may be a natural deterioration in the macula which can lead to the depositing of drusen under the retina sometimes with the formation of abnormal blood vessels.
- Replacement of the lens as treatment for cataract can cause pseudophakic macular edema. (‘pseudophakia’ means ‘replacement lens’) also known as Irvine-Gass syndrome The surgery involved sometimes irritates the retina (and other parts of the eye) causing the capillaries in the retina to dilate and leak fluid into the retina. Less common today with modern lens replacement techniques.
- Chronic uveitis and intermediate uveitis can be a cause.
- Blockage of a vein in the retina can cause engorgement of the other retinal veins causing them to leak fluid under or into the retina. The blockage may be caused, among other things, by atherosclerosis, high blood pressure and glaucoma.
- A number of drugs can cause changes in the retina that can lead to macular edema. The effect of each drug is variable and some drugs have a lesser role in causation. The principal medication known to affect the retina are:- latanoprost, epinephrine, rosiglitazone, timolol and thiazolidinediones among others.
- A few congenital diseases are known to be associated with macular edema for example retinitis pigmentosa and retinoschisis.
Studies indicate drusen associated with AMD are similar in molecular composition to Beta-Amyloid (βA) plaques and deposits in other age-related diseases such as Alzheimer's disease and atherosclerosis. This suggests that similar pathways may be involved in the etiologies of AMD and other age-related diseases.
Over time, it is common for the vitreous within the human eye to liquify and collapse in processes known as syneresis and synchisis respectively. This creates fluid-filled areas that can combine to form pockets of vitreous gel that are mostly liquid with very small concentrations of collagen. If these liquid pockets are close enough to the interface between the vitreous gel and the retina, they can cause complete separation of the vitreous from the retina in a normally occurring process in older humans called posterior vitreous detachment (PVD). PVD in of itself is not dangerous and a natural process.
If the separation of the vitreous from the retina is not complete, areas of focal attachment or adhesions can occur, i.e. a VMA. The pulling forces or traction from this adhesion on the retinal surface can sometimes cause edema within the retina, damage to retinal blood vessels causing bleeding, or damage to the optic nerve causing disruption in the nerve signals sent to the brain for visual processing. It is important to note that while the VMA itself is not dangerous, the resultant pulling on the retina called vitreomacular traction (VMT) causes the above damage. The size and strength of the VMA determine the variety of resulting pathologies or symptoms.
VMA can also lead to the development of VMT/traction-related complications such as macular puckers and macular holes leading to distorted vision or metamorphopsia; epiretinal membrane; tractional macular oedema; myopic macular retinoschisis; visual impairment; blindness. The incidence of VMA is reported as high as 84% for patients with macular hole, 100% for patients with vitreomacular traction syndrome, and 56% in idiopathic epimacular membrane.
Cystoid macular edema (CME) involves fluid accumulation in the outer plexiform layer secondary to abnormal perifoveal retinal capillary permeability. The edema is termed "cystoid" as it appears cystic; however, lacking an epithelial coating, it is not truly cystic. The cause for CME can be remembered with the mnemonic "DEPRIVEN" (diabetes, epinepherine, pars planitis, retinitis pigmentosa, Irvine-Gass syndrome, venous occlusion, E2-prostaglandin analogues, nicotinic acid/niacin).
Diabetic macular edema (DME) is similarly caused by leaking macular capillaries. DME is the most common cause of visual loss in both proliferative, and non-proliferative diabetic retinopathy.
Studies have identified the following abnormalities as risk factors for the development of BRVO:
- hypertension
- cardiovascular disease
- obesity
- glaucoma
Diabetes mellitus was not a major independent risk factor.
This may be present in conditions causing traction on the retina especially at the macula. This may occur in:
a) The vitreomacular traction syndrome; b) Proliferative diabetic retinopathy with vitreoretinal traction; c) Atypical cases of impending macular hole.
CNV can occur rapidly in individuals with defects in Bruch's membrane, the innermost layer of the choroid. It is also associated with excessive amounts of Vascular endothelial growth factor (VEGF). As well as in wet macular degeneration, CNV can also occur frequently with the rare genetic disease pseudoxanthoma elasticum and rarely with the more common optic disc drusen. CNV has also been associated with extreme myopia or malignant myopic degeneration, where in choroidal neovascularization occurs primarily in the presence of cracks within the retinal (specifically) macular tissue known as lacquer cracks.
Distortion of vision refers to straight lines not appearing straight, but instead bent, crooked, or wavy. Usually this is caused by distortion of the retina itself. This distortion can herald a loss of vision in macular degeneration, so anyone with distorted vision should seek medical attention by an ophthalmologist promptly. Other conditions leading to swelling of the retina can cause this distortion, such as macular edema and central serous chorioretinopathy.
An Amsler grid can be supplied by an ophthalmologist so that the vision can be monitored for distortion in people who may be predisposed to this problem.
Tunnel vision implies that the peripheral vision, or side vision, is lost, while the central vision remains. Thus, the vision is like looking through a tunnel, or through a paper towel roll. Some disorders that can cause this include:
Glaucoma - severe glaucoma can result in loss of nearly all of the peripheral vision, with a small island of central vision remaining. Sometimes even this island of vision can be lost as well.
Retinitis pigmentosa - This is usually a hereditary disorder which can be part of numerous syndromes. It is more common in males. The peripheral retina develops pigmentary deposits, and the peripheral vision gradually becomes worse and worse. The central vision can be affected eventually as well. People with this problem may have trouble getting around in the dark. Cataract can be a complication as well. There is no known treatment for this disorder, and supplements of Vitamin A have not been proven to help.
Punctate Inner Choroidopathy - This condition is where vessels gro (( material is missing ))
Stroke - a stroke involving both sides of the visual part of the brain may wipe out nearly all of the peripheral vision. Fortunately, this is a very rare occurrence
Distorted vision is a symptom with several different possible causes.
Familial transmission is now recognized in a small proportion of people with MacTel type 2; however, the nature of any related genetic defect or defects remains elusive. The MacTel genetic study team hopes that exome analysis in the affected population and relatives may be more successful in identifying related variants.
Usually being asymptomatic, drusen are typically found during routine eye exams where the pupils have been dilated.
All people with "diabetes mellitus" are at riskthose with Type I diabetes and those with Type II diabetes. The longer a person has diabetes, the higher their risk of developing some ocular problem. Between 40 and 45 percent of Americans diagnosed with diabetes have some stage of diabetic retinopathy. After 20 years of diabetes, nearly all patients with Type I diabetes and >60% of patients with Type II diabetes have some degree of retinopathy; however, these statistics were published in 2002 using data from four years earlier, limiting the usefulness of the research. The subjects would have been diagnosed with diabetes in the late 1970s, before modern fast acting insulin and home glucose testing.
Prior studies had also assumed a clear glycemic threshold between people at high and low risk of diabetic retinopathy.
However, it has been shown that the widely accepted WHO and American Diabetes Association diagnostic cutoff for diabetes of a fasting plasma glucose ≥ 7.0 mmol/l (126 mg/dl) does not accurately identify diabetic retinopathy among patients. The cohort study included a multi-ethnic, cross-sectional adult population sample in the US, as well as two cross-sectional adult populations in Australia. For the US-based component of the study, the sensitivity was 34.7% and specificity was 86.6%. For patients at similar risk to those in this study (15.8% had diabetic retinopathy), this leads to a positive predictive value of 32.7% and negative predictive value of 87.6%.
Published rates vary between trials, the proposed explanation being differences in study methods and reporting of prevalence rather than incidence values.
During pregnancy, diabetic retinopathy may also be a problem for women with diabetes.
It is recommended that all pregnant women with diabetes have dilated eye examinations each trimester to protect their vision.
People with Down's syndrome, who have extra chromosome 21 material, almost never acquire diabetic retinopathy. This protection appears to be due to the elevated levels of endostatin, an anti-angiogenic protein, derived from collagen XVIII. The collagen XVIII gene is located on chromosome 21.
Although intermediate uveitis can develop at any age, it primarily afflicts children and young adults. There is a bimodal distribution with one peak in the second decade and another peak in the third or fourth decade.
In the United States the proportion of patients with intermediate uveitis is estimated to be 4-8% of uveitis cases in referral centers. The National Institutes of Health reports a higher percentage (15%), which may indicate improved awareness or the nature of the uveitis referral clinic. In the pediatric population, intermediate uveitis can account for up to 25% of uveitis cases.