Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
STGD1 is the most common form of inherited juvenile macular degeneration with a prevalence of approximately 1 in 10,000 births.
Retinitis pigmentosa is the leading cause of inherited blindness, with approximately 1/4,000 individuals experiencing the non-syndromic form of their disease within their lifetime. It is estimated that 1.5 million people worldwide are currently affected. Early onset RP occurs within the first few years of life and is typically associated with syndromic disease forms, while late onset RP emerges from early to mid-adulthood.
Autosomal dominant and recessive forms of retinitis pigmentosa affect both male and female populations equally; however, the less frequent X-linked form of the disease affects male recipients of the X-linked mutation, while females usually remain unaffected carriers of the RP trait. The X-linked forms of the disease are considered severe, and typically lead to complete blindness during later stages. In rare occasions, a dominant form of the X-linked gene mutation will affect both males and females equally.
Due to the genetic inheritance patterns of RP, many isolate populations exhibit higher disease frequencies or increased prevalence of a specific RP mutation. Pre-existing or emerging mutations that contribute to rod photoreceptor degeneration in retinitis pigmentosa are passed down through familial lines; thus, allowing certain RP cases to be concentrated to specific geographical regions with an ancestral history of the disease. Several hereditary studies have been performed to determine the varying prevalence rates in Maine (USA), Birmingham (England), Switzerland (affects 1/7000), Denmark (affects 1/2500), and Norway. Navajo Indians display an elevated rate of RP inheritance as well, which is estimated as affecting 1 in 1878 individuals. Despite the increased frequency of RP within specific familial lines, the disease is considered non-discriminatory and tends to equally affect all world populations.
The long-term prognosis for patients with Stargardt disease is widely variable although the majority of people will progress to legal blindness.
Stargardt disease has no impact on general health and life expectancy is normal. Some patients, usually those with the late onset form, can maintain excellent visual acuities for extended periods, and are therefore able to perform tasks such as reading or driving.
RP may be:
(1) Non-syndromic, that is, it occurs alone, without any other clinical findings,
(2) Syndromic, with other neurosensory disorders, developmental abnormalities, or complex clinical findings, or
(3) Secondary to other systemic diseases.
- RP combined with deafness (congenital or progressive) is called Usher syndrome.
- Alport's syndrome is associated with RP and an abnormal glomerular-basement membrane leading nephrotic syndrome and inherited as X-linked dominant.
- RP combined with ophthalmoplegia, dysphagia, ataxia, and cardiac conduction defects is seen in the mitochondrial DNA disorder Kearns-Sayre syndrome (also known as Ragged Red Fiber Myopathy)
- RP combined with retardation, peripheral neuropathy, acanthotic (spiked) RBCs, ataxia, steatorrhea, is absence of VLDL is seen in abetalipoproteinemia.
- RP is seen clinically in association with several other rare genetic disorders (including muscular dystrophy and chronic granulomatous disease) as part of McLeod syndrome. This is an X-linked recessive phenotype characterized by a complete absence of XK cell surface proteins, and therefore markedly reduced expression of all Kell red blood cell antigens. For transfusion purposes these patients are considered completely incompatible with all normal and K0/K0 donors.
- RP associated with hypogonadism, and developmental delay with an autosomal recessive inheritance pattern is seen with Bardet-Biedl syndrome
Other conditions include neurosyphilis, toxoplasmosis and Refsum's disease.
Choroideremia (; CHM) is a rare, X-linked recessive form of hereditary retinal degeneration that affects roughly 1 in 50,000 males. The disease causes a gradual loss of vision, starting with childhood night blindness, followed by peripheral vision loss, and progressing to loss of central vision later in life. Progression continues throughout the individual's life, but both the rate of change and the degree of visual loss are variable among those affected, even within the same family.
Choroideremia is caused by a loss-of-function mutation in the "CHM" gene which encodes Rab escort protein 1 (REP1), a protein involved in lipid modification of Rab proteins. While the complete mechanism of disease is not fully understood, the lack of a functional protein in the retina results in cell death and the gradual deterioration of the choroid, retinal pigment epithelium (RPE), and retinal photoreceptor cells.
As of 2017, there is no treatment for choroideremia; however, retinal gene therapy clinical trials have demonstrated a possible treatment.
While choroideremia is an ideal candidate for gene therapy there are other potential therapies that could restore vision after it has been lost later in life. Foremost of these is stem cell therapy. A clinical trial published in 2014 found that a subretinal injection of human embryonic stem cells in patients with age-related macular degeneration and Stargardt disease was safe and improved vision in most patients. Out of 18 patients, vision improved in 10, improved or remained the same in 7, and decreased in 1 patient, while no improvement was seen in the untreated eyes. The study found "no evidence of adverse proliferation, rejection, or serious ocular or systemic safety issues related to the transplanted tissue." A 2015 study used CRISPR/Cas9 to repair mutations in patient-derived induced pluripotent stem cells that cause X-linked retinitis pigmentosa. This study suggests that a patient's own repaired cells could be used for therapy, reducing the risk of immune rejection and ethical issues that come with the use of embryonic stem cells.
It is estimated to affect less than one in a million people. Only 50 to 100 cases have so far been described.
A disease that threatens the eyesight and additionally produces a hair anomaly that is apparent to strangers causes harm beyond the physical. It is therefore not surprising that learning the diagnosis is a shock to the patient. This is as true of the affected children as of their parents and relatives. They are confronted with a statement that there are at present no treatment options. They probably have never felt so alone and abandoned in their lives. The question comes to mind, "Why me/my child?" However, there is always hope and especially for affected children, the first priority should be a happy childhood. Too many examinations and doctor appointments take up time and cannot practically solve the problem of a genetic mutation within a few months. It is therefore advisable for parents to treat their child with empathy, but to raise him or her to be independent and self-confident by the teenage years. Openness about the disease and talking with those affected about their experiences, even though its rarity makes it unlikely that others will be personally affected by it, will together assist in managing life.
Age-related macular degeneration accounts for more than 54% of all vision loss in the white population in the USA. An estimated 8 million Americans are affected with early age-related macular degeneration, of whom over 1 million will develop advanced age-related macular degeneration within the next 5 years. In the UK, age-related macular degeneration is the cause of blindness in almost 42% of those who go blind aged 65–74 years, almost two-thirds of those aged 75–84 years, and almost three-quarters of those aged 85 years or older.
Macular degeneration is more likely to be found in Caucasians than in people of African descent.
Retinal degeneration is the deterioration of the retina caused by the progressive and eventual death of the cells of the retina. There are several reasons for retinal degeneration, including artery or vein occlusion, diabetic retinopathy, R.L.F./R.O.P. (retrolental fibroplasia/ retinopathy of prematurity), or disease (usually hereditary). These may present in many different ways such as impaired vision, night blindness, retinal detachment, light sensitivity, tunnel vision, and loss of peripheral vision to total loss of vision. Of the retinal degenerative diseases retinitis pigmentosa (RP) is a very important example.
Inherited retinal degenerative disorders in humans exhibit genetic and phenotypic heterogeneity in their underlying causes and clinical outcomes*. These retinopathies affect approximately one in 2000 individuals worldwide. A wide variety of causes have been attributed to retinal degeneration, such as disruption of genes that are involved in phototransduction, biosynthesis and folding of the rhodopsin molecule, and the structural support of the retina. Mutations in the rhodopsin gene account for 25% to 30% (30% to 40% according to) of all cases of autosomal dominant retinitis pigmentosa (adRP) in North America. There are many mechanisms of retinal degeneration attributed to rhodopsin mutations or mutations that involve or affect the function of rhodopsin. One mechanism of retinal degeneration is rhodopsin overexpression. Another mechanism, whereby a mutation caused a truncated rhodopsin, was found to affect rod function and increased the rate of photoreceptor degeneration.
- *For example, a single peripherin/RDS splice site mutation was identified as the cause of retinopathy in eight families; the phenotype in these families ranged from retinitis pigmentosa to macular degeneration.
No complications are encountered in most patients with lattice degeneration, although in young myopes, retinal detachment can occur. There are documented cases with macula-off retinal detachment in patients with asymptomatic lattice degeneration. Partial or complete vision loss almost always occurs in such cases. Currently there is no prevention or cure for lattice degeneration.
Macular corneal dystrophy, also known as Fehr corneal dystrophy named for German ophthalmologist Oskar Fehr (1871-1959), is a rare pathological condition affecting the stroma of cornea. The first signs are usually noticed in the first decade of life, and progress afterwards, with opacities developing in the cornea and attacks of pain. The condition was first described by Arthur Groenouw in 1890.
Familial exudative vitreoretinopathy (FEVR) ( ) is a genetic disorder affecting the growth and development of blood vessels in the retina of the eye. This disease can lead to visual impairment and sometimes complete blindness in one or both eyes. FEVR is characterized by exudative leakage and hemorrhage of the blood vessels in the retina, along with incomplete vascularization of the peripheral retina. The disease process can lead to retinal folds, tears, and detachments.
"Best disease" is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. In most cases, an affected person has one parent with the condition.
The inheritance pattern of adult-onset vitelliform macular dystrophy is definitively autosomal dominant. Many affected people, however, have no history of the disorder in their family and only a small number of affected families have been reported. This is because the penetrance of the condition is incomplete; therefore, it is possible for an individual to have a copy of the mutant allele and not display the VMD phenotype. The ratio of males to females is approximately 1:1.
Studies indicate drusen associated with AMD are similar in molecular composition to Beta-Amyloid (βA) plaques and deposits in other age-related diseases such as Alzheimer's disease and atherosclerosis. This suggests that similar pathways may be involved in the etiologies of AMD and other age-related diseases.
Though there is no treatment for Cone dystrophy, certain supplements may help in delaying the progression of the disease.
The beta-carotenoids, lutein and zeaxanthin, have been evidenced to reduce the risk of developing age related macular degeneration (AMD), and may therefore provide similar benefits to Cone dystrophy sufferers.
Consuming omega-3 fatty acids (docosahexaenoic acid and eicosapentaenoic acid) has been correlated with a reduced progression of early AMD, and in conjunction with low glycemic index foods, with reduced progression of advanced AMD, and may therefore delay the progression of cone dystrophy.
At least one type of autosomal dominant cone-rod dystrophy is caused by mutations in the guanylate cyclase 2D gene (GUCY2D) on chromosome 17.
Vitelliform macular dystrophy or vitelliform dystrophy is an irregular autosomal dominant eye disorder which can cause progressive vision loss. This disorder affects the retina, specifically cells in a small area near the center of the retina called the macula. The macula is responsible for sharp central vision, which is needed for detailed tasks such as reading, driving, and recognizing faces. The condition is characterized by yellow (or orange), slightly elevated, round structures similar to the yolk (Latin "vitellus") of an egg.
Familial transmission is now recognized in a small proportion of people with MacTel type 2; however, the nature of any related genetic defect or defects remains elusive. The MacTel genetic study team hopes that exome analysis in the affected population and relatives may be more successful in identifying related variants.
Optic disc drusen are found clinically in about 1% of the population but this increases to 3.4% in individuals with a family history of ODD. About two thirds to three quarters of clinical cases are bilateral. A necropsy study of 737 cases showed a 2.4% incidence with 2 out of 15 (13%) bilateral, perhaps indicating the insidious nature of many cases. An autosomal dominant inheritance pattern with incomplete penetrance and associated inherited dysplasia of the optic disc and its blood supply is suspected. Males and females are affected at equal rates. Caucasians are the most susceptible ethnic group. Certain conditions have been associated with disc drusen such as retinitis pigmentosa, angioid streaks, Usher syndrome, Noonan syndrome and Alagille syndrome. Optic disc drusen are not related to Bruch membrane drusen of the retina which have been associated with age-related macular degeneration.
This may be present in conditions causing traction on the retina especially at the macula. This may occur in:
a) The vitreomacular traction syndrome; b) Proliferative diabetic retinopathy with vitreoretinal traction; c) Atypical cases of impending macular hole.
Optic pits occur equally between men and women. They are seen in roughly 1 in 10,000 eyes, and approximately 85% of optic pits are found to be unilateral (i.e. in only one eye of any affected individual). About 70% are found on the temporal side (or lateral one-half) of the optic disc. Another 20% are found centrally, while the remaining pits are located either superiorly (in the upper one-half), inferiorly (in the lower one-half), or nasally (in the medial one-half towards the nose).
FEVR is, as its name suggests,
familial and can be inherited in an
autosomal dominant, autosomal
recessive or X-linked recessive pattern.1-3 It is caused by mutations in
FZD4, LRP5, TSPAN12 and NDP
genes, which impact the wingless/
integrated (Wnt) receptor signaling
pathway. 3 Disruption of this path
way leads to abnormalities of vascu-
lar growth in the peripheral retina. 2,3
It is typically bilateral, but asymmetric, with varying degrees of
progression over the individual’s
lifetime. Age of onset varies, and
visual outcome can be strongly
influenced by this factor. Patients
with onset before age three have a
more guarded long-term prognosis
whereas those with later onset are
more likely to have asymmetric
presentation with deterioration of
vision in one eye only. 2-3 However,
because FEVR is a lifelong disease,
these patients are at risk even as
adults.2 Ocular findings and useful
vision typically remain stable if the
patient does not have deterioration
before age 20.2,4 Due to the variability and unpredictability of the
disease course, patients with FEVR
should be followed throughout
their lifetime.
Clinical presentation can vary
greatly. In mild variations, patients
may experience peripheral vascular
changes, such as peripheral avascular zone, vitreoretinal adhesions,
arteriovenous anastomoses and a
V-shaped area of retinochoroidal
degeneration. 4 Severe forms may
present with neovascularization,
subretinal and intraretinal hemorrhages and exudation. 4 Neovascularization is a poor prognostic
indicator and can lead to retinal
folds, macular ectopia and tractional retinal detachment. 2,4 Widefield FA has been crucial in
helping to understand this disease,
as well as helping to confirm the
diagnosis. An abrupt cessation
of the retinal capillary network
in a scalloped edge posterior to
fibrovascular proliferations can
be made using FA.2,3,5 Patients can
also show delayed transit filling on
FA as well as delayed/patchy choroidal filling, bulbous vascular terminals, capillary dropout, venous/venous shunting and abnormal
branching patterns. 2,3,5 The staging of FEVR is similar
to that of retinopathy of prematurity. The first two stages involve an
avascular retinal periphery with or
without extraretinal vascularization (stage 1 and 2, respectively). 4 Stages three through five delineate
levels of retinal detachment; stage 3
is subtotal without foveal involvement, stage 4 is subtotal with foveal
involvement and stage 5 is a total
detachment, open or closed funnel.4
Because there was neovascularization in the absence of retinal detachment, our patient was
considered to have
stage 2.
Although a variety of complex classification schemes are described in the literature, there are essentially two forms of macular telangiectasia: type 1 and type 2. Type 1 is typically unilateral and occurs almost exclusively in males after the age of 40.
Type 2 is mostly bilateral, occurs equally in males and females.
The pathogenesis of GA is multifactorial and is generally thought to be triggered by intrinsic and extrinsic stressors of the poorly regenerative retinal pigment epithelium (RPE), particularly oxidative stress caused by the high metabolic demand of photoreceptors, photo-oxidation, and environmental stressors such as cigarette smoke. Variations in several genes, particularly in the complement system, increase the risk of developing GA. This is an active area of research but the current hypothesis is that with aging, damage caused by these stressors accumulates, which coupled with a genetic predisposition, results in the appearance of drusen and lipofuscin deposits (early and intermediate AMD). These and other products of oxidative stress can trigger inflammation via multiple pathways, particularly the complement cascade, ultimately leading to loss of photoreceptors, RPE, and choriocapillaris, culminating in atrophic lesions that grow over time.