Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Roberts syndrome is an extremely rare condition that only affects about 150 reported individuals. Although there have been only about 150 reported cases, the affected group is quite diverse and spread worldwide. Parental consanguinity (parents are closely related) is common with this genetic disorder. The frequency of Roberts syndrome carriers is unknown.
Opitz G/BBB Syndrome is a rare genetic condition caused by one of two major types of mutations: MID1 mutation on the short (p) arm of the X chromosome or a mutation of the 22q11.2 gene on the 22nd chromosome. Since it is a genetic disease, it is an inherited condition. However, there is an extremely wide variability in how the disease presents itself.
In terms of prevention, several researchers strongly suggest prenatal testing for at-risk pregnancies if a MID1 mutation has been identified in a family member. Doctors can perform a fetal sex test through chromosome analysis and then screen the DNA for any mutations causing the disease. Knowing that a child may be born with Opitz G/BBB syndrome could help physicians prepare for the child’s needs and the family prepare emotionally. Furthermore, genetic counseling for young adults that are affected, are carriers or are at risk of carrying is strongly suggested, as well (Meroni, Opitz G/BBB syndrome, 2012). Current research suggests that the cause is genetic and no known environmental risk factors have been documented. The only education for prevention suggested is genetic testing for at-risk young adults when a mutation is found or suspected in a family member.
The cause of Goldenhar syndrome is largely unknown. However, it is thought to be multifactorial, although there may be a genetic component, which would account for certain familial patterns. It has been suggested that there is a branchial arch development issue late in the first trimester.
An increase in Goldenhar syndrome in the children of Gulf War veterans has been suggested, but the difference was shown to be statistically insignificant.
Currently there are only around 26 people in the world that are known to have this rare condition. Inheritance is thought to be X-linked recessive.
Treatment with isotretinoin may induce substantial resolution of skin lesions, but the risk of secondary infection remains.
The diagnosis of PPS has been made in several ethnic groups, including Caucasian, Japanese, and sub-Saharan African. Males and females are equally likely to suffer from the syndrome. Since the disorder is very rare, its incidence rate is difficult to estimate, but is less than 1 in 10,000.
Prevalence ranges from 1 in 3500 to 5600 live births. Male-female ratio is found to be 3:2.
There have been 30 cases of Marden-Walker Syndrome reported since 1966. The first case of this was in 1966 a female infant was diagnosed with blepharophimosis, joint contractures, arachnodactyly and growth development delay. She ended up passing at 3 months due to pneumonia.
Since the symptoms caused by this disease are present at birth, there is no “cure.” The best cure that scientists are researching is awareness and genetic testing to determine risk factors and increase knowledgeable family planning. Prevention is the only option at this point in time for a cure.
As its name indicates, a person with the syndrome has one Y chromosome and four X chromosomes on the 23rd pair, thus having 49 chromosomes rather than the normal 46. As with most categories of aneuploidy disorders, 49,XXXXY syndrome is often accompanied by intellectual disability. It can be considered a form of 47, XXY Klinefelter syndrome, or a variant of it.
It is genetic but not hereditary. This means that while the genes of the parents cause the syndrome, there is a small chance of more than one child having the syndrome. The probability of inheriting the disease is about 1%.
The individuals with this syndrome are males, but 49, XXXXX also exists with similar characteristics.
The prognosis is poor; affected individuals are either stillborn or die shortly after birth. The longest survival reported in literature is of 134 days.
This syndrome is transmitted as an autosomal recessive disorder and there is a risk for recurrence of 25% in future pregnancies.
At this time, there are no other phenotypes (observable expressions of a gene) that have been discovered for mutations in the ESCO2 gene.
Genetic counseling for VWS involves discussion of disease transmission in the autosomal dominant manner and possibilities for penetrance and expression in offspring. Autosomal dominance means affected parents have a 50% chance of passing on their mutated "IRF6" allele to a their child. Furthermore, if a cleft patient has lip pits, he or she has a ten times greater risk of having a child with cleft lip with or without cleft palate than a cleft patient who does not have lip pits. Types of clefting between parents and affected children are significantly associated; however, different types of clefts may occur horizontally and vertically within the same pedigree. In cases where clefting is the only symptom, a complete family history must be taken to ensure the patient does not have non-syndromic clefting.
Branchio-oculo-facial syndrome is difficult to diagnose because it has incomplete penetrance. It is often misdiagnosed as branchio-oto-renal syndrome because of their similarities in symptoms.
Overall, the estimated prevalence of Stickler syndrome is about 1 in 10,000 people. Stickler syndrome affects 1 in 7,500 to 9,000 newborns.
The incidence of Fraser syndrome is 0.043 per 10,000 live born infants and 1.1 in 10,000 stillbirths, making it a rare syndrome.
Many professionals that are likely to be involved in the treatment of those with Stickler's syndrome, include anesthesiologists, oral and maxillofacial surgeons; craniofacial surgeons; ear, nose, and throat specialists, ophthalmologists, optometrists, audiologists, speech pathologists, physical therapists and rheumatologists.
Cohen syndrome (also known as Pepper syndrome or Cervenka syndrome, named after Michael Cohen, William Pepper and Jaroslav Cervenka, who researched the illness) is a genetic disorder.
The aneuploidy is thought to be caused by problems occurring during meiosis, either in the mother or in both the mother and father. Successive nondisjunctions have been observed in the mother of at least one patient.
The features of the syndrome likely arise due to failure of X-inactivation and the presence of multiple X chromosomes from the same parent causing problems with parental imprinting. In theory, X-inactivation should occur and leave only one X chromosome active in each cell. However, failure of this process has been observed in one individual studied. The reason for this is thought to be the presence of an unusually large, and imbalanced, number of X chromosomes interfering with the process.
There is no specific treatment or cure for individuals affected with this type of syndrome, though some of the abnormal physical features may be surgically correctable.
Van der Woude syndrome (VDWS) and popliteal pterygium syndrome (PPS) are allelic variants of the same condition; that is, they are caused by different mutations of the same gene. PPS includes all the features of VDWS, plus popliteal pterygium, syngnathia, distinct toe/nail abnormality, syndactyly, and genito-urinary malformations.
One case of Cohen Syndrome, in a Palestinian boy from Tul-Karem, was reported in the Israeli monthly Kol Israel BeAsakim (in Hebrew) in the December 2007 issue. Over the past several years there have been approximately 50 new cases worldwide. There are population groups with this condition in Australia, the UK and the US. It still seems to go undiagnosed leaving the number of cases less than 500.
Oculofaciocardiodental syndrome is a rare X linked genetic disorder.
Ho–Kaufman–Mcalister syndrome, also known as the Chen-Kung Ho–Kaufman–Mcalister syndrome, is a rare congenital malformation syndrome where infants are born with a cleft palate, micrognathia, Wormian bones, congenital heart disease, dislocated hips, bowed fibulae, preaxial polydactyly of the feet, abnormal skin patterns, and most prominently, missing tibia. The etiology is unknown. Ho–Kaufman–Mcalister syndrome is named after Chen-Kung Ho, R.L. Kaufman, and W.H. Mcalister who first described the syndrome in 1975 at Washington University in St. Louis. It is considered a rare disease by the Office of Rare Diseases (ORD) of the National Institutes of Health (NIH).
Catel–Manzke syndrome is a rare genetic disorder characterized by distinctive abnormalities of the index fingers; the classic features of Pierre Robin syndrome; occasionally with additional physical findings. "Pierre Robin syndrome" refers to a sequence of abnormalities that may occur as a distinct syndrome or as part of another underlying disorder. Pierre Robin syndrome is characterized by an unusually small jaw (micrognathia), downward displacement or retraction of the tongue (glossoptosis), and incomplete closure of the roof of the mouth (cleft palate). It is also linked to hyper mobility syndrome.