Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Genetic
- Inborn errors of metabolism
1. Congenital disorder of glycosylation
2. Mitochondrial disorders
3. Peroxisomal disorder
4. Glucose transporter defect
5. Menkes disease
6. Congenital disorders of amino acid metabolism
7. Organic acidemia
Syndromes
- Contiguous gene deletion
1. 17p13.3 deletion (Miller–Dieker syndrome)
- Single gene defects
1. Rett syndrome (primarily girls)
2. Nijmegen breakage syndrome
3. X-linked lissencephaly with abnormal genitalia
4. Aicardi–Goutières syndrome
5. Ataxia telangiectasia
6. Cohen syndrome
7. Cockayne syndrome
Acquired
- Disruptive injuries
1. Traumatic brain injury
2. Hypoxic-ischemic encephalopathy
3. Ischemic stroke
4. Hemorrhagic stroke
- Infections
1. Congenital HIV encephalopathy
2. Meningitis
3. Encephalitis
- Toxins
1. Lead poisoning
2. Chronic renal failure
- Deprivation
1. Hypothyroidism
2. Anemia
3. Congenital heart disease
4. Malnutrition
Genetic factors may play a role in causing some cases of microcephaly. Relationships have been found between autism, duplications of chromosomes, and macrocephaly on one side. On the other side, a relationship has been found between schizophrenia, deletions of chromosomes, and microcephaly. Moreover, an association has been established between common genetic variants within known microcephaly genes ("MCPH1, CDK5RAP2") and normal variation in brain structure as measured with magnetic resonance imaging (MRI)i.e., primarily brain cortical surface area and total brain volume.
The spread of Aedes mosquito-borne Zika virus has been implicated in increasing levels of congenital microcephaly by the International Society for Infectious Diseases and the US Centers for Disease Control and Prevention. Zika can spread from a pregnant woman to her fetus. This can result in other severe brain malformations and birth defects. A study published in The New England Journal of Medicine has documented a case in which they found evidence of the Zika virus in the brain of a fetus that displayed the morphology of microcephaly.
Isolated
1. Familial (autosomal recessive) microcephaly
2. Autosomal dominant microcephaly
3. X-linked microcephaly
4. Chromosomal (balanced rearrangements and ring chromosome)
Syndromes
- Chromosomal
1. Poland syndrome
2. Down syndrome
3. Edward syndrome
4. Patau syndrome
5. Unbalanced rearrangements
- Contiguous gene deletion
1. 4p deletion (Wolf–Hirschhorn syndrome)
2. 5p deletion (Cri-du-chat)
3. 7q11.23 deletion (Williams syndrome)
4. 22q11 deletion (DiGeorge syndrome)
- Single gene defects
1. Smith–Lemli–Opitz syndrome
2. Seckel syndrome
3. Cornelia de Lange syndrome
4. Holoprosencephaly
5. Primary microcephaly 4
6. Wiedemann-Steiner syndrome
Acquired
- Disruptive injuries
1. Ischemic stroke
2. Hemorrhagic stroke
3. Death of a monozygotic twin
- Vertically transmitted infections
1. Congenital cytomegalovirus infection
2. Toxoplasmosis
3. Congenital rubella syndrome
4. Zika virus
- Drugs
1. Fetal hydantoin syndrome
2. Fetal alcohol syndrome
Other
1. Radiation exposure to mother
2. Maternal malnutrition
3. Maternal phenylketonuria
4. Poorly controlled gestational diabetes
5. Hyperthermia
6. Maternal hypothyroidism
7. Placental insufficiency
The syndrome primarily affects young males. Preliminary studies suggest that prevalence may be 1.8 per 10,000 live male births. 50% of those affected do not live beyond 25 years of age, with deaths attributed to the impaired immune function.
Lujan–Fryns syndrome is a rare X-linked dominant syndrome, and is therefore more common in males than females. Its prevalence within the general population has not yet been determined.
X-linked intellectual disability (previously known as X-linked mental retardation) refers to forms of intellectual disability which are specifically associated with X-linked recessive inheritance.
As with most X-linked disorders, males are more heavily affected than females. Females with one affected X chromosome and one normal X chromosome tend to have milder symptoms.
Unlike many other types of intellectual disability, the genetics of these conditions are relatively well understood. It has been estimated there are ~200 genes involved in this syndrome; of these ~100 have been identified.
X-linked intellectual disability accounts for ~16% of all cases of intellectual disability in males.
Several X-linked syndromes include intellectual disability as part of the presentation. These include:
- Coffin–Lowry syndrome
- MASA syndrome
- MECP2 duplication syndrome
- X-linked alpha thalassemia mental retardation syndrome
- mental retardation and microcephaly with pontine and cerebellar hypoplasia
1p36 deletion syndrome (also known as monosomy 1p36) is a congenital genetic disorder characterized by moderate to severe intellectual disability, delayed growth, hypotonia, seizures, limited speech ability, malformations, hearing and vision impairment, and distinct facial features. The symptoms may vary, depending on the exact location of the chromosomal deletion.
The condition is caused by a genetic deletion (loss of a segment of DNA) on the outermost band on the short arm (p) of chromosome 1. It is one of the most common deletion syndromes. It is estimated that the syndrome occurs in one in every 5,000 to 10,000 births. Knowledge of the disorder has increased a great deal over the last decade, mainly because more patients have been accurately diagnosed and described in international medical literature.
Since tetrasomy 9p is not usually inherited, the risk of a couple having a second child with the disorder is minimal. While patients often do not survive to reproductive age, those who do may or may not be fertile. The risk of a patient's child inheriting the disorder is largely dependent on the details of the individual's case.
The collecting system is the structure that collects urine directly from the kidney tissue and routes it by way of the ureter to the bladder. Structural renal abnormalities are rare in both sexes.
Treatment with isotretinoin may induce substantial resolution of skin lesions, but the risk of secondary infection remains.
M2DS is one of the several types of X-linked intellectual disability. The cause of M2DS is a duplication of the MECP2 or Methyl CpG binding protein 2 gene located on the X chromosome (Xq28). The MeCP2 protein plays a pivotal role in regulating brain function. Increased levels of MECP2 protein results in abnormal neural function and impaired immune system. Mutations in the MECP2 gene are also commonly associated with Rett syndrome in females. Advances in genetic testing and more widespread use of Array Comparative Genomic Hybridization has led to increased diagnosis of MECP2 duplication syndrome. It is thought to represent ~1% of X-linked male mental disability cases.
Prognosis varies widely depending on severity of symptoms, degree of intellectual impairment, and associated complications. Because the syndrome is rare and so newly identified, there are no long term studies.
Genitopatellar Syndrome is an autosomal dominant inheritance where the mutation in the KAT6B causes the syndrome. The KAT6B gene is responsible for making an enzyme called histone acetyltransferase which functions in regulating and making of histone which are proteins that attach to DNA and give the chromosomes their shape. The function of histone acetyltransferase produced from KAT6B is unknown but it is considered as a regulator of early developments. There is little known about how the mutation in the KAT6B causes the syndrome but researchers suspects that the mutations occur near the end of the KAT6B gene and causes it to produce shortened acetyltransferase enzyme. The shortened enzyme alters the regulation of other genes. On the other hand, the mutation of KAT6B leading to the specific features of genitopatellar syndrome is still not surely proven.
Affected individuals have a somewhat shortened lifespan. The maximum described lifespan is 67 years. Adults with 13q deletion syndrome often need support services to maintain their activities of daily living, including adult day care services or housing services.
3C syndrome is very rare, occurring in less than 1 birth per million. Because of consanguinity due to a founder effect, it is much more common in a remote First Nations village in Manitoba, where 1 in 9 people carries the recessive gene.
Zamzam–Sheriff–Phillips syndrome is a rare autosomal recessive congenital disorder. It is characterized by aniridia, ectopia lentis, abnormal upper incisors and intellectual disability. Not a lot of research has been undertaken of this particular disease so thus far there is no known gene that affects this condition. However it has been hypothesised that the symptoms described are found at a particular gene, though intellectual disability is believed to be due to a different genetic cause.
Consanguinuity (intermarrying among relatives such as cousins), often associated with autosomal recessive inheritance, has been attributed to the inheritance of this disease.
The true prevalence of PMS has not been determined. More than 1200 people have been identified worldwide according the Phelan-McDermid Syndrome Foundation. However, it is believed to be underdiagnosed due to inadequate genetic testing and lack of specific clinical features. It is known to occur with equal frequency in males and females. Studies using chromosomal microarray for diagnosis indicate that at least 0.5% of cases of ASD can be explained by mutations or deletions in the "SHANK3" gene. In addition when ASD is associated with ID, "SHANK3" mutations or deletions have been found in up to 2% of individuals.
Current research is focusing on clearly defining the phenotype associated with tetrasomy 18p and identifying which genes cause medical and developmental problems when present in four copies.
The Seckel syndrome or microcephalic primordial dwarfism (also known as bird-headed dwarfism, Harper's syndrome, Virchow-Seckel dwarfism, and Bird-headed dwarf of Seckel) is an extremely rare congenital nanosomic disorder.
Inheritance is autosomal recessive.
It is characterized by intrauterine growth retardation and postnatal dwarfism with a small head, narrow bird-like face with a beak-like nose, large eyes with down-slanting palpebral fissures , receding mandible and intellectual disability.
A mouse model has been developed. This mouse model is characterized by a severe deficiency of ATR protein. These mice suffer high levels of replicative stress and DNA damage. Adult Seckel mice display accelerated aging. These findings are consistent with the DNA damage theory of aging.
Weaver syndrome (also called Weaver-Smith syndrome) is an extremely rare congenital disorder associated with rapid growth beginning in the prenatal period and continuing through the toddler and youth years. It is characterized by advanced osseous maturation, and distinctive craniofacial, skeletal, and neurological abnormalities. It was first described by Dr. David Weaver in 1974. It is similar to Sotos syndrome.
Qazi–Markouizos syndrome is a rare hereditary condition characterized by non-progressive, congenital hypotonia, severe intellectual disability, an increased proportion of type 2 muscle fibers, which additionally exhibited increased size, as well as dysharmonic skeletal maturation. To date, the molecular mechanism of Qazi–Markouizos syndrome, which is also known as Puerto Rican infant hypotonia syndrome, remains unknown.
Lujan–Fryns syndrome (LFS), also referred to as X-linked mental retardation with Marfanoid habitus and Lujan syndrome, is an X-linked genetic disorder that causes mild to moderate intellectual disability and features described as Marfanoid habitus, referring to a group of physical characteristics similar to those found in Marfan syndrome. These features include a tall, thin stature and long, slender limbs. LFS is also associated with psychopathology and behavioral abnormalities, and it exhibits a number of malformations affecting the brain and heart. The disorder is inherited in an X-linked dominant manner, and is attributed to a missense mutation in the "MED12" gene. There is currently no treatment or therapy for the underlying "MED12" malfunction, and the exact cause of the disorder remains unclear.
With appropriate treatment and management, patients with Weaver syndrome appear to do well, both physically and intellectually, throughout their life and have a normal lifespan. Their adult height is normal as well.
Among children, the cause of intellectual disability is unknown for one-third to one-half of cases. About 5% of cases are inherited from a person's parents. Genetic defects that cause intellectual disability but are not inherited can be caused by accidents or mutations in genetic development. Examples of such accidents are development of an extra chromosome 18 (trisomy 18) and Down syndrome, which is the most common genetic cause. Velocariofacial syndrome and fetal alcohol spectrum disorders are the two next most common causes. However, doctors have found many other causes. The most common are:
- Genetic conditions. Sometimes disability is caused by abnormal genes inherited from parents, errors when genes combine, or other reasons. The most prevalent genetic conditions include Down syndrome, Klinefelter syndrome, Fragile X syndrome (common among boys), neurofibromatosis, congenital hypothyroidism, Williams syndrome, phenylketonuria (PKU), and Prader–Willi syndrome. Other genetic conditions include Phelan-McDermid syndrome (22q13del), Mowat–Wilson syndrome, genetic ciliopathy, and Siderius type X-linked intellectual disability () as caused by mutations in the "PHF8" gene (). In the rarest of cases, abnormalities with the X or Y chromosome may also cause disability. 48, XXXX and 49, XXXXX syndrome affect a small number of girls worldwide, while boys may be affected by 49, XXXXY, or 49, XYYYY. 47, XYY is not associated with significantly lowered IQ though affected individuals may have slightly lower IQs than non-affected siblings on average.
- Problems during pregnancy. Intellectual disability can result when the fetus does not develop properly. For example, there may be a problem with the way the fetus' cells divide as it grows. A pregnant person who drinks alcohol (see fetal alcohol spectrum disorder) or gets an infection like rubella during pregnancy may also have a baby with intellectual disability.
- Problems at birth. If a baby has problems during labor and birth, such as not getting enough oxygen, he or she may have developmental disability due to brain damage.
- Exposure to certain types of disease or toxins. Diseases like whooping cough, measles, or meningitis can cause intellectual disability if medical care is delayed or inadequate. Exposure to poisons like lead or mercury may also affect mental ability.
- Iodine deficiency, affecting approximately 2 billion people worldwide, is the leading preventable cause of intellectual disability in areas of the developing world where iodine deficiency is endemic. Iodine deficiency also causes goiter, an enlargement of the thyroid gland. More common than full-fledged cretinism, as intellectual disability caused by severe iodine deficiency is called, is mild impairment of intelligence. Certain areas of the world due to natural deficiency and governmental inaction are severely affected. India is the most outstanding, with 500 million suffering from deficiency, 54 million from goiter, and 2 million from cretinism. Among other nations affected by iodine deficiency, China and Kazakhstan have instituted widespread iodization programs, whereas, as of 2006, Russia had not.
- Malnutrition is a common cause of reduced intelligence in parts of the world affected by famine, such as Ethiopia.
- Absence of the arcuate fasciculus.
Say–Neger syndrome is a rare X-linked genetic disorder that is mostly characterized as developmental delay. It is one of the rare causes of short stature. It is closely related with trigonocephaly (a misshapen forehead due to premature fusion of bones in the skull). People with Say–Meyer syndrome have impaired growth, deficits in motor skills development and mental state.
It is suggested that it is from a X-linked transmission.