Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Lymph node abnormalities and organ dysfunction in Castleman disease are caused by excessive secretion of cytokines. IL-6 is the most commonly elevated cytokine, but some affected people may have normal IL-6 levels and present with non-iron-deficient microcytic anemia.
The release of these cytokines is caused by infection with Human herpesvirus 8 in HHV-8-associated MCD. The cause of the release of cytokines in idiopathic MCD has been hypothesized to be caused by either a somatic mutation, a germline genetic mutation, or a non-HHV-8-virus.
In the unicentric form of the disease, surgical resection is often curative, and the prognosis is excellent.
Castleman disease (CD) is a lymphoproliferative disorder of unknown cause. CD is associated with an increased risk of B-cell lymphoma.
Human herpesvirus 8 (HHV-8), also known as Kaposi sarcoma-associated herpesvirus (KSHV) has been found in some cases of multicentric Castleman disease (MCD). The HHV8 can give rise to an increased number of plasmablast cells within the mantle zone of B-cell follicles. These plasmablasts express IgM-immunoglobulin light chains, most often of lambda subtype. These plasmablasts can give rise to a spectrum of abnormalities including progression to microlymphoma (microscopic clusters of plasmablast cells) or clinical lymphoma.
This type of lymphoma is predominantly seen in acquired immunodeficiencies, including acquired immunodeficiency syndrome (AIDS) but it can also occur in immunosuppression such as with organ transplantation or the elderly. The plasmablasts do not show rearranged immunoglobulin genes, and typically lack EBV infection.
The disease predominantly affects lymph nodes and the spleen, a pattern dissimilar to plasmablastic lymphoma of the oral cavity of AIDS which is not associated with HHV-8 infection. Despite traditional chemotherapy with CHOP (cyclophosphamide, doxorubicin, prednisone, vincristine), and the possible addition of antiviral therapy and inhibition of specific cellular targets including the use of rituximab, the prognosis in this lymphoma has been poor.
This lymphoma subtype has sometimes been confused with plasmablastic lymphoma in the literature, although that is a dissimilar specific entity. Similarly, this subtype is considered distinct from other lymphomas which have a plasmablastic immunophenotype such as primary effusion lymphoma, ALK+ large B-cell lymphoma, and extracavitary HHV–8-positive lymphoma.
HHV8 is also associated with Kaposi's sarcoma and with another subtype of lymphoma, primary effusion lymphoma, previously called body cavity-based lymphoma.
Large B-cell lymphoma arising in HHV8-associated multicentric Castleman's disease is a type of large B-cell lymphoma, recognized in the WHO 2008 classification. It is sometimes called the plasmablastic form of multicentric Castleman disease. It has sometimes been confused with plasmablastic lymphoma in the literature, although that is a dissimilar specific entity. It has variable CD20 expression and unmutated immunoglobulin variable region genes.
Minimal change disease is most common in very young children but can occur in older children and adults. It is by far the most common cause of nephrotic syndrome in children between the ages of 1 and 7, accounting for the majority (about 90%) of these diagnoses. Among teenagers who develop nephrotic syndrome, it is caused by minimal change disease about half the time. It can also occur in adults but accounts for less than 20% of adults diagnosed with nephrotic syndrome. Among children less than 10 years of age, boys seem to be more likely to develop minimal change disease than girls. Minimal change disease is being seen with increasing frequency in adults over the age of 80.
People with one or more autoimmune disorders are at increased risk of developing minimal change disease. Having minimal change disease also increases the chances of developing other autoimmune disorders.
Protein tyrosine phosphatase receptor type O, also known as glomerular epithelial protein 1 (GLEPP1), has been shown to be mutated in a number of cases.
Focal segmental glomerulosclerosis (FSGS) is a cause of nephrotic syndrome in children and adolescents, as well as a leading cause of kidney failure in adults. It is also known as "focal glomerular sclerosis" or "focal nodular glomerulosclerosis". It accounts for about a sixth of the cases of nephrotic syndrome. (Minimal change disease (MCD) is by far the most common cause of nephrotic syndrome in children: MCD and primary FSGS may have a similar cause.)
The individual components of the name refer to the appearance of the kidney tissue on biopsy: "focal"—only some of the glomeruli are involved (as opposed to diffuse), "segmental"—only part of each glomerulus is involved (as opposed to global), "glomerulosclerosis"—refers to scarring of the glomerulus (a part of the nephron (the functional unit of the kidney)). The glomerulosclerosis is usually indicated by heavy PAS staining and findings of immunoglobulin M (IgM) and C3-convertase (C3) in the sclerotic segment.
Macular corneal dystrophy, also known as Fehr corneal dystrophy named for German ophthalmologist Oskar Fehr (1871-1959), is a rare pathological condition affecting the stroma of cornea. The first signs are usually noticed in the first decade of life, and progress afterwards, with opacities developing in the cornea and attacks of pain. The condition was first described by Arthur Groenouw in 1890.
Macular corneal dystrophy is inherited in autosomal recessive fashion and is thought to be caused by the lack or abnormal configuration of keratan sulfate. Most cases of MCD are caused by mutations in CHST6 gene.
The gene CHST6 is a carbohydrate sulfotransferase encoding an enzyme designated corneal N-acetylglucosamine-6-sulfotransferase. In MCD type I, various mutations lead to inactivation of the enzyme, in MCD type II, inactivation is caused by large deletions and/or replacements in the gene.
Microlissencephaly is listed in Orphanet database as a rare disease. There is no much information available about the epidemiology of microlissencepahly in literature. A PhD thesis has estimated the prevalence of microlissencepahly in South–Eastern Hungary between July 1992 and June 2006 to be a case every 91,000 live births (0.11:10,000).
The treatment of nephrotic syndrome can be symptomatic or can directly address the injuries caused to the kidney.
The prognosis for nephrotic syndrome under treatment is generally good although this depends on the underlying cause, the age of the patient and their response to treatment. It is usually good in children, because minimal change disease responds very well to steroids and does not cause chronic renal failure. Any relapses that occur become less frequent over time; the opposite occurs with mesangiocapillary glomerulonephritis, in which the kidney fails within three years of the disease developing, making dialysis necessary and subsequent kidney transplant. In addition children under the age of 5 generally have a poorer prognosis than prepubescents, as do adults older than 30 years of age as they have a greater risk of kidney failure.
Other causes such as focal segmental glomerulosclerosis frequently lead to end stage renal disease. Factors associated with a poorer prognosis in these cases include level of proteinuria, blood pressure control and kidney function (GFR).
Without treatment nephrotic syndrome has a very bad prognosis especially "rapidly progressing glomerulonephritis", which leads to acute kidney failure after a few months.
Microlissencephaly (MLIS) is a rare congenital brain disorder that combines severe microcephaly (small head) with lissencephaly (smooth brain surface due to absent sulci and gyri). Microlissencephaly is a heterogeneous disorder i.e. it has many different causes and a variable clinical course. Microlissencephaly is a malformation of cortical development (MCD) that occurs due to failure of neuronal migration between the third and fifth month of gestation as well as stem cell population abnormalities. Numerous genes have been found to be associated with microlissencephaly, however, the pathophysiology is still not completely understood.
The combination of lissencephaly with severe congenital microcephaly is designated as microlissencephaly only when the cortex is abnormally thick. If such combination exists with a normal cortical thickness (2.5 to 3 mm), it is known as "microcephaly with simplified gyral pattern" (MSGP). Both MLIS and MSGP have a much more severe clinical course than microcephaly alone. They are inherited in autosomal recessive manner. Prior to 2000, the term “microlissencephaly” was used to designate both MLIS and MSGP.
Malonyl-CoA decarboxylase deficiency (MCD), or Malonic aciduria is an autosomal-recessive metabolic disorder caused by a genetic mutation that disrupts the activity of Malonyl-Coa decarboxylase. This enzyme breaks down Malonyl-CoA (a fatty acid precursor and a fatty acid oxidation blocker) into Acetyl-CoA and carbon dioxide.
The signs and symptoms of this disorder typically appear in early childhood. Almost all affected children have delayed development. Additional signs and symptoms can include weak muscle tone (hypotonia), seizures, diarrhea, vomiting, and low blood sugar (hypoglycemia). A heart condition called cardiomyopathy, which weakens and enlarges the heart muscle, is another common feature of malonyl-CoA decarboxylase deficiency.
Some common symptoms in Malonyl-CoA decarboxylase deficiency, such as cardiomyopathy and metabolic acidosis, are triggered by the high concentrations of Malonyl-CoA in the cytoplasm. High level of Malonyl-CoA will inhibits β-oxidation of fatty acids through deactivating the carrier of fatty acyl group, CPT1, and thus, blocking fatty acids from going into the mitochondrial matrix for oxidation.
A research conducted in Netherlands has suggested that carnitine supplements and a low fat diet may help to reduce the level of malonic acid in our body.