Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Factors increasing the risk (to either the woman, the fetus/es, or both) of pregnancy complications beyond the normal level of risk may be present in a woman's medical profile either before she becomes pregnant or during the pregnancy. These pre-existing factors may relate to physical and/or mental health, and/or to social issues, or a combination.
Some common risk factors include:
- Age of either parent
- Adolescent parents
- Older parents
- Exposure to environmental toxins in pregnancy
- Exposure to recreational drugs in pregnancy:
- Ethanol during pregnancy can cause fetal alcohol syndrome and fetal alcohol spectrum disorder.
- Tobacco smoking and pregnancy, when combined, causes twice the risk of premature rupture of membranes, placental abruption and placenta previa. Also, it causes 30% higher odds of the baby being born prematurely.
- Prenatal cocaine exposure is associated with, for example, premature birth, birth defects and attention deficit disorder.
- Prenatal methamphetamine exposure can cause premature birth and congenital abnormalities. Other investigations have revealed short-term neonatal outcomes to include small deficits in infant neurobehavioral function and growth restriction when compared to control infants. Also, prenatal methamphetamine use is believed to have long-term effects in terms of brain development, which may last for many years.
- Cannabis in pregnancy is possibly associated with adverse effects on the child later in life.
- Exposure to Pharmaceutical drugs in pregnancy. Anti-depressants, for example, may increase risks of such outcomes as preterm delivery.
- Ionizing radiation
- Risks arising from previous pregnancies:
- Complications experienced during a previous pregnancy are more likely to recur.
- Many previous pregnancies. Women who have had five previous pregnancies face increased risks of very rapid labor and excessive bleeding after delivery.
- Multiple previous fetuses. Women who have had more than one fetus in a previous pregnancy face increased risk of mislocated placenta.
- Multiple pregnancy, that is, having more than one fetus in a single pregnancy.
- Social and socioeconomic factors. Generally speaking, unmarried women and those in lower socioeconomic groups experience an increased level of risk in pregnancy, due at least in part to lack of access to appropriate prenatal care.
- Unintended pregnancy. Unintended pregnancies preclude preconception care and delays prenatal care. They preclude other preventive care, may disrupt life plans and on average have worse health and psychological outcomes for the mother and, if birth occurs, the child.
- Height. Pregnancy in women whose height is less than 1.5 meters (5 feet) correlates with higher incidences of preterm birth and underweight babies. Also, these women are more likely to have a small pelvis, which can result in such complications during childbirth as shoulder dystocia.
- Weight
- Low weight: Women whose pre-pregnancy weight is less than 45.5 kilograms (100 pounds) are more likely to have underweight babies.
- Obese women are more likely to have very large babies, potentially increasing difficulties in childbirth. Obesity also increases the chances of developing gestational diabetes, high blood pressure, preeclampsia, experiencing postterm pregnancy and/or requiring a cesarean delivery.
- Intercurrent disease in pregnancy, that is, a disease and condition not necessarily directly caused by the pregnancy, such as diabetes mellitus in pregnancy, SLE in pregnancy or thyroid disease in pregnancy.
The following have been identified as risk factors for placenta previa:
- Previous placenta previa (recurrence rate 4–8%), caesarean delivery, myomectomy or endometrium damage caused by D&C.
- Women who are younger than 20 are at higher risk and women older than 35 are at increasing risk as they get older.
- Alcohol use during pregnancy was previous listed as a risk factor, but is discredited by this article.
- Women who have had previous pregnancies ( multiparity ), especially a large number of closely spaced pregnancies, are at higher risk due to uterine damage.
- Smoking during pregnancy; cocaine use during pregnancy
- Women with a large placentae from twins or erythroblastosis are at higher risk.
- Race is a controversial risk factor, with some studies finding that people from Asia and Africa are at higher risk and others finding no difference.
- Placental pathology (Vellamentous insertion, succinturiate lobes, bipartite i.e. bilobed placenta etc.)
- Baby is in an unusual position: breech (buttocks first) or transverse (lying horizontally across the womb).
Placenta previa is itself a risk factor of placenta accreta.
Placenta previa occurs approximately one of every 200 births. It has been suggested that incidence of placenta previa is increasing due to increased rate of Caesarian section.
Perinatal mortality rate of placenta previa is 3-4 times higher than normal pregnancies.
Research shows that symptoms of Posttraumatic stress disorder are common following childbirth, with prevalence of 24-30.1% at 6 weeks, dropping to 13.6% at 6 months. PTSD is rarer; a review found that following normal childbirth (excluding stillbirth and some other complications) rates of PTSD ranged from 2.8-5.6% after 6 weeks, dropping to 1.5% at 6 months.
In rare cases, inherited bleeding disorders, like hemophilia, von Willebrand disease (vWD), or factor IX or XI deficiency, may cause severe postpartum hemorrhage, with an increased risk of death particularly in the postpartum period. The risk of postpartum hemorrhage in patients with vWD and carriers of hemophilia has been found to be 18.5% and 22% respectively. This pathology occurs due to the normal physiological drop in maternal clotting factors after delivery which greatly increases the risk of secondary postpartum hemorrhage.
Another bleeding risk factor is thrombocytopenia, or decreased platelet levels, which is the most common hematological change associated with pregnancy induced hypertension. If platelet counts drop less than 100,000 per microliter the patient will be at a severe risk for inability to clot during and after delivery.
The prognosis of this complication depends on whether treatment is received by the patient, on the quality of treatment, and on the severity of the abruption. Outcomes for the baby also depend on the gestational age.
In the Western world, maternal deaths due to placental abruption are rare. The fetal prognosis is worse than the maternal prognosis; approximately 12% of fetuses affected by placental abruption die. 77% of fetuses that die from placental abruption die before birth; the remainder die due to complications of preterm birth.
Without any form of medical intervention, as often happens in many parts of the world, placental abruption has a high maternal mortality rate.
Placental abruption occurs in approximately 0.2–1% of all pregnancies. Though different causes change when abruption is most likely to occur, the majority of placental abruptions occur before 37 weeks gestation, and 14% occur before 32 weeks gestation.
Antepartum bleeding (APH), also prepartum hemorrhage, is bleeding during pregnancy from the 24th week (sometimes defined as from the 20th week) gestational age to full term (40th week). The primary consideration is the presence of a placenta previa which is a low lying placenta at or very near to the internal cervical os. This condition occurs in roughly 4 out of 1000 pregnancies and usually needs to be resolved by delivering the baby via cesarean section. Also a placental abruption (in which there is premature separation of the placenta) can lead to obstetrical hemorrhage, sometimes concealed. This pathology is of important consideration after maternal trauma such as a motor vehicle accident or fall.
Other considerations to include when assessing antepartum bleeding are: sterile vaginal exams that are performed in order to assess dilation of the patient when the 40th week is approaching. As well as cervical insufficiency defined as a midtrimester (14th-26th week) dilation of the cervix which may need medical intervention to assist in keeping the pregnancy sustainable.
Not only is obesity associated with miscarriage, it can result in sub-fertility and other adverse pregnancy outcomes. Recurrent miscarriage is also related to obesity. Women with bulimia nervosa and anorexia nervosa may have a greater risk for miscarriage. Nutrient deficiencies have not been found to impact miscarriage rates but hyperemesis gravidarum sometimes precedes a miscarriage.
Caffeine consumption also has been correlated to miscarriage rates, at least at higher levels of intake. However, such higher rates have been found to be statistically significant only in certain circumstances.
Vitamin supplementation has generally not shown to be effective in preventing miscarriage. Chinese traditional medicine has not been found to prevent miscarriage.
The age of the pregnant woman is a significant risk factor. Miscarriage rates increase steadily with age, with more substantial increases after age 35. In those under the age of 35 the risk is about 10% while it is about 45% in those over the age of 40. Risk begins to increase around the age of 30. Paternal age is associated with increased risk.
Fertility following ectopic pregnancy depends upon several factors, the most important of which is a prior history of infertility. The treatment choice does not play a major role; A randomized study in 2013 concluded that the rates of intrauterine pregnancy 2 years after treatment of ectopic pregnancy are approximately 64% with radical surgery, 67% with medication, and 70% with conservative surgery. In comparison, the cumulative pregnancy rate of women under 40 years of age in the general population over 2 years is over 90%.
When ectopic pregnancies are treated, the prognosis for the mother is very good in Western countries; maternal death is rare, but most fetuses die or are aborted. For instance, in the UK, between 2003 and 2005 there were 32,100 ectopic pregnancies resulting in 10 maternal deaths (meaning that 1 in 3,210 women with an ectopic pregnancy died).
In the developing world, however, especially in Africa, the death rate is very high, and ectopic pregnancies are a major cause of death among women of childbearing age.
Methods of measuring blood loss associated with childbirth vary, complicating comparison of prevalence rates. A systematic review reported the highest rates of PPH in Africa (27.5%), and the lowest in Oceania (7.2%), with an overall rate globally of 10.8%. The rate in both Europe and North America was around 13%. The rate is higher for multiple pregnancies (32.4% compared with 10.6% for singletons), and for first-time mothers (12.9% compared with 10.0% for women in subsequent pregnancies). The overall rate of severe PPH (>1000 ml) was much lower at an overall rate of 2.8%, again with the highest rate in Africa (5.1%).
It is recommended that women with vasa previa should deliver through elective cesarean prior to rupture of the membranes. Given the timing of membrane rupture is difficult to predict, elective cesarean delivery at 35–36 weeks is recommended. This gestational age gives a reasonable balance between the risk of death and that of prematurity. Several authorities have recommended hospital admission about 32 weeks. This is to give the patient proximity to the operating room for emergency delivery should the membranes rupture. Because these patients are at risk for preterm delivery, it is recommended that steroids should be given to promote fetal lung maturation. When bleeding occurs, the patient goes into labor, or if the membranes rupture, immediate treatment with an emergency caesarean delivery is usually indicated.
There is also an increased risk for cardiovascular complications, including hypertension and ischemic heart disease, and kidney disease. Other risks include stroke and venous thromboembolism. It seems pre-eclampsia does not increase the risk of cancer.
Lowered blood supply to the fetus in pre-eclampsia causes lowered nutrient supply, which could result in intrauterine growth restriction (IUGR) and low birth weight. The fetal origins hypothesis states that fetal undernutrition is linked with coronary heart disease later in adult life due to disproportionate growth.
Because preeclampsia leads to a mismatch between the maternal energy supply and fetal energy demands, pre-eclampsia can lead to IUGR in the developing fetus. Infants suffering from IUGR are prone to suffer from poor neuronal development and in increased risk for adult disease according to the Barker hypothesis. Associated adult diseases of the fetus due to IUGR include, but are not limited to, coronary artery disease (CAD), type 2 diabetes mellitus (T2DM), cancer, osteoporosis, and various psychiatric illnesses.
The risk of pre-eclampsia and development of placental dysfunction has also been shown to be recurrent cross-generationally on the maternal side and most likely on the paternal side. Fetuses born to mothers that were born small for gestational age (SGA) were 50% more likely to develop preeclampsia while fetuses born to both SGA parents were three-fold more likely to develop preeclampsia in future pregnancies.
In humans, retained placenta is generally defined as a placenta that has not undergone placental expulsion within 30 minutes of the baby’s birth where the third stage of labor has been managed actively.
Risks of retained placenta include hemorrhage and infection. After the placenta is delivered, the uterus should contract down to close off all the blood vessels inside the uterus. If the placenta only partially separates, the uterus cannot contract properly, so the blood vessels inside will continue to bleed. A retained placenta thereby leads to hemorrhage.
A pregnant woman may have intercurrent diseases, defined as disease not directly caused by the pregnancy, but that may become worse or be a potential risk to the pregnancy.
- Diabetes mellitus and pregnancy deals with the interactions of diabetes mellitus (not restricted to gestational diabetes) and pregnancy. Risks for the child include miscarriage, growth restriction, growth acceleration, fetal obesity (macrosomia), polyhydramnios (too much amniotic fluid), and birth defects.
- Thyroid disease in pregnancy can, if uncorrected, cause adverse effects on fetal and maternal well-being. The deleterious effects of thyroid dysfunction can also extend beyond pregnancy and delivery to affect neurointellectual development in the early life of the child. Demand for thyroid hormones is increased during pregnancy which may cause a previously unnoticed thyroid disorder to worsen.
- Untreated celiac disease can cause spontaneous abortion (miscarriage), intrauterine growth restriction, small for gestational age, low birthweight and preterm birth. Often reproductive disorders are the only manifestation of undiagnosed celiac disease and most cases are not recognized. Complications or failures of pregnancy cannot be explained simply by malabsorption, but by the autoimmune response elicited by the exposure to gluten, which causes damage to the placenta. The gluten-free diet avoids or reduces the risk of developing reproductive disorders in pregnant women with celiac disease. Also, pregnancy can be a trigger for the development of celiac disease in genetically susceptible women who are consuming gluten.
- Systemic lupus erythematosus in pregnancy confers an increased rate of fetal death "in utero," spontaneous abortion, and of neonatal lupus.
- Hypercoagulability in pregnancy is the propensity of pregnant women to develop thrombosis (blood clots). Pregnancy itself is a factor of hypercoagulability (pregnancy-induced hypercoagulability), as a physiologically adaptive mechanism to prevent "post partum" bleeding. However, in combination with an underlying hypercoagulable states, the risk of thrombosis or embolism may become substantial.
The use of recreational drugs in pregnancy can cause various pregnancy complications.
- Ethanol during pregnancy can cause fetal alcohol syndrome and fetal alcohol spectrum disorder. Studies have shown that light to moderate drinking during pregnancy might not pose a risk to the fetus, although no amount of alcohol during pregnancy can be guaranteed to be absolutely safe.
- Tobacco smoking during pregnancy can cause a wide range of behavioral, neurological, and physical difficulties. Smoking during pregnancy causes twice the risk of premature rupture of membranes, placental abruption and placenta previa. Smoking is associated with 30% higher odds of preterm birth.
- Prenatal cocaine exposure is associated with premature birth, birth defects and attention deficit disorder.
- Prenatal methamphetamine exposure can cause premature birth and congenital abnormalities. Short-term neonatal outcomes show small deficits in infant neurobehavioral function and growth restriction. Long-term effects in terms of impaired brain development may also be caused by methamphetamine use.
- Cannabis in pregnancy has been shown to be teratogenic in large doses in animals, but has not shown any teratogenic effects in humans.
Hypercoagulability in pregnancy, particularly due to inheritable thrombophilia, can lead to placental vascular thrombosis. This can in turn lead to complications like early-onset hypertensive disorders of pregnancy, pre-eclampsia and small for gestational age infants (SGA). Among other causes of hypercoagulability, Antiphospholipid syndrome has been associated with adverse pregnancy outcomes including recurrent miscarriage. Deep vein thrombosis has an incidence of one in 1,000 to 2,000 pregnancies in the United States, and is the second most common cause of maternal death in developed countries after bleeding.
In low-risk pregnancies, the association between cigarette smoking and a reduced risk of pre-eclampsia has been consistent and reproducible across epidemiologic studies. High-risk pregnancies (those with pregestational diabetes, chronic hypertension, history of pre-eclampsia in a previous pregnancy, or multifetal gestation) showed no significant protective effect. The reason for this discrepancy is not definitively known; research supports speculation that the underlying pathology increases the risk of preeclampsia to such a degree that any measurable reduction of risk due to smoking is masked. However, the damaging effects of smoking on overall health and pregnancy outcomes outweighs the benefits in decreasing the incidence of preeclampsia. It is recommended that smoking be stopped prior to, during and after pregnancy.
Studies suggest that marijuana use in the months prior to or during the early stages of pregnancy may interfere with normal placental development and consequently increase the risk of preeclampsia.
An important risk factor for placenta accreta is placenta previa in the presence of a uterine scar. Placenta previa is an independent risk factor for placenta accreta. Additional reported risk factors for placenta accreta include maternal age and multiparity, other prior uterine surgery, prior uterine curettage, uterine irradiation, endometrial ablation, Asherman syndrome, uterine leiomyomata, uterine anomalies, hypertensive disorders of pregnancy, and smoking.
The condition is increased in incidence by the presence of scar tissue i.e. Asherman's syndrome usually from past uterine surgery, especially from a past dilation and curettage, (which is used for many indications including miscarriage, termination, and postpartum hemorrhage), myomectomy, or caesarean section. A thin decidua can also be a contributing factor to such trophoblastic invasion. Some studies suggest that the rate of incidence is higher when the fetus is female. Other risk factors include low-lying placenta, anterior placenta, congenital or acquired uterine defects (such as uterine septa), leiomyoma, ectopic implantation of placenta (including cornual pregnancy).
Pregnant women above 35 years of age who have had a Caesarian section and now have a placenta previa overlying the uterine scar have a 40% chance of placenta accreta.
of fetal membranes (afterbirth) is observed more frequently in cattle than in other animals. In a normal condition, a cow’s placenta is expelled within a 12-hour period after calving.
Many factors can contribute to the loss of uterine muscle tone, including:
- overdistention of the uterus
- multiple gestations
- polyhydramnios
- fetal macrosomia
- prolonged labor
- oxytocin augmentation of labor
- grand multiparity (having given birth 5 or more times)
- precipitous labor (labor lasting less than 3 hours)
- magnesium sulfate treatment of preeclampsia
- chorioamnionitis
- halogenated anesthetics
- uterine leiomyomata
- full bladder
- retained colyledon, placental fragments
- placenta previa
- placental abruption
- constriction ring
- incomplete separation of the placenta
Vasa previa is seen more commonly with velamentous insertion of the umbilical cord, accessory placental lobes (succenturiate or bilobate placenta), multiple gestation, IVF pregnancy. In IVF pregnancies incidences as high as one in 300 have been reported. The reasons for this association are not clear, but disturbed orientation of the blastocyst at implantation, vanishing embryos and the increased frequency of placental morphological variations in in vitro fertilisation pregnancies have all been postulated.
A number of studies have shown that tobacco use is a significant factor in miscarriages among pregnant smokers, and that it contributes to a number of other threats to the health of the fetus. Smoking and pregnancy, combined, cause twice the risk of premature rupture of membranes, placental abruption and placenta previa. Also, it causes 30% higher odds of the baby being born prematurely.