Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In the world less than 1 in 1.00.000 have HIDS [5]. 200 individuals throughout the world do suffer from MVK.
The prevalence of Molybdenum co-factor deficiency is estimated as being between 1 in 100 000 and 1 in 200 000. To date more than 100 cases have been reported. However, this may significantly under represent cases.
A 1999 retrospective study of 74 cases of neonatal onset found that 32 (43%) patients died during their first hyperammonemic episode. Of those who survived, less than 20% survived to age 14. Few of these patients received liver transplants.
Inherited or congenital FX deficiency is passed on by autosomal recessive inheritance. A person needs to inherit a defective gene from both parents. People who have only one defective gene usually do not exhibit the disease, but can pass the gene on to half their offspring. Different genetic mutations have been described.
In persons with congenital FX deficiency the condition is lifelong. People affected should alert other family members as they may also have the condition or carry the gene. In the general population the condition affects about 1 in 1 million people. However, the prevalence may be higher as not all individuals may express the disease and be diagnosed.
In the acquired form of FX deficiency an insufficient amount of factor X is produced by the liver due to liver disease, vitamin K deficiency, buildup of abnormal proteins in organs (amyloidosis) or certain medications (i.e. warfarin). In amyloidosis FX deficiency develops as FX and other coagulation factors are absorbed by amyloid fibrils.
In 2009, Monash Children's Hospital at Southern Health in Melbourne, Australia reported that a patient known as Baby Z became the first person to be successfully treated for molybdenum cofactor deficiency type A. The patient was treated with cPMP, a precursor of the molybdenum cofactor. Baby Z will require daily injections of cyclic pyranopterin monophosphate (cPMP) for the rest of her life.
This disorder, epidemiologically speaking, is thought to affect approximately 1 in 50,000 newborns according to Jethva, et al. While in the U.S. state of California there seems to be a ratio of 1 in 35,000.
The human GALK1 gene contains 8 exons and spans approximately 7.3 kb of genomic DNA. The GALK1 promoter was found to have many features in common with other housekeeping genes, including high GC content, several copies of the binding site for the Sp1 transcription factor and the absence of TATA-box and CCAAT-box motifs typically present in eukaryotic polymerase II promoters. Analysis by 5-prime-RACE PCR indicated that the GALK1 mRNA is heterogeneous at the 5-prime end, with transcription sites occurring at many locations between 21 and 61 bp upstream of the ATG start site of the coding region. In vitro translation experiments of the GALK1 cDNA indicated that the protein is cytosolic and not associated with endoplasmic reticulum membrane.
Mevalonate kinase deficiency causes an accumulation of mevalonic acid in the urine, resulting from insufficient activity of the enzyme mevalonate kinase (ATP:mevalonate 5-phosphotransferase; EC 2.7.1.36).
The disorder was first described in 1985.
Classified as an inborn error of metabolism, mevalonate kinase deficiency usually results in developmental delay, hypotonia, anemia, hepatosplenomegaly, various dysmorphic features, mental retardation, an overall failure to thrive and several other features.
A 2009 study reported results from 36 children who had received a stem cell transplant. At the time of follow-up (median time 62 months), 75% of the children were still alive.
Galactokinase deficiency is an autosomal recessive disorder, which means the defective gene responsible for the disorder is located on an autosome (chromosome 17 is an autosome), and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.
Unlike galactose-1-phosphate uridyltransferase deficiency, the symptoms of galactokinase deficiency are relatively mild. The only known symptom in affected children is the formation of cataracts, due to production of galactitol in the lens of the eye. Cataracts can present as a failure to develop a social smile and failure to visually track moving objects.
Inherited or congenital FX deficiency is usually passed on by autosomal recessive inheritance. A person needs to inherit a defective gene from both parents. People who have only one defective gene are asymptomatic, but may have lower FXII levels and can pass the gene on to half their offspring.
In persons with congenital FXII deficiency the condition is lifelong. People affected may want to alert other family members as they may also may carry the gene. A 1994 study of 300 healthy blood donors found that 7 persons (2.3%) had FXII deficiencies with one subject having no detectable FXII (0.3%). This study is at variance with estimates that only 1 in 1,000,000 people has the condition.
The acquired form of FXII deficiency is seen in patients with the nephrotic syndrome, liver disease, sepsis and shock, disseminated intravascular coagulation, and other diseases.
A congenital disorder of glycosylation (previously called carbohydrate-deficient glycoprotein syndrome) is one of several rare inborn errors of metabolism in which glycosylation of a variety of tissue proteins and/or lipids is deficient or defective. Congenital disorders of glycosylation are sometimes known as CDG syndromes. They often cause serious, sometimes fatal, malfunction of several different organ systems (especially the nervous system, muscles, and intestines) in affected infants. The most common subtype is CDG-Ia (also referred to as PMM2-CDG) where the genetic defect leads to the loss of phosphomannomutase 2, the enzyme responsible for the conversion of mannose-6-phosphate into mannose-1-phosphate.
Nuclear factor-kappa B Essential Modulator (NEMO) deficiency syndrome is a rare type of primary immunodeficiency disease that has a highly variable set of symptoms and prognoses. It mainly affects the skin and immune system but has the potential to affect all parts of the body, including the lungs, urinary tract and gastrointestinal tract. It is a monogenetic disease caused by mutation in the IKBKG gene (IKKγ, also known as the NF-κB essential modulator, or NEMO). NEMO is the modulator protein in the IKK inhibitor complex that, when activated, phosphorylates the inhibitor of the NF-κB transcription factors allowing for the translocation of transcription factors into the nucleus.
The link between IKBKG mutations and NEMO deficiency was identified in 1999. IKBKG is located on the X chromosome and is X-linked therefore this disease predominantly affects males, However females may be genetic carriers of certain types of mutations. Other forms of the syndrome involving NEMO-related pathways can be passed on from parent to child in an autosomal dominant manner – this means that a child only has to inherit the faulty gene from one parent to develop the condition. This autosomal dominant type of NEMO deficiency syndrome can affect both boys and girls.
No treatment is available for most of these disorders. Mannose supplementation relieves the symptoms in PMI-CDG (CDG-Ib) for the most part, even though the hepatic fibrosis may persist. Fucose supplementation has had a partial effect on some SLC35C1-CDG (CDG-IIc or LAD-II) patients.
Enolase Deficiency is a rare genetic disorder of glucose metabolism. Partial deficiencies have been observed in several caucasian families. The deficiency is transmitted through an autosomal dominant inheritance pattern. The gene for Enolase 1 has been localized to Chromosome 1 in humans. Enolase deficiency, like other glycolytic enzyme deficiences, usually manifests in red blood cells as they rely entirely on anaerobic glycolysis. Enolase deficiency is associated with a spherocytic phenotype and can result in hemolytic anemia, which is responsible for the clinical signs of Enolase deficiency.
Depending on ethnicity and geography, prevalence has been estimated to be between 1 in 40,000 and 1 in 300,000; based on these estimates the disease may be underdiagnosed. Jewish infants of Iraqi or Iranian origin appear to be most at risk based on a study of a community in Los Angeles in which there was a prevalence of 1 in 4200.
Arakawa's syndrome II is an autosomal dominant metabolic disorder that causes a deficiency of the enzyme tetrahydrofolate-methyltransferase; affected individuals cannot properly metabolize methylcobalamin, a type of Vitamin B.
It is also called Methionine synthase deficiency, Tetrahydrofolate-methyltransferase deficiency syndrome, and N5-methylhomocysteine transferase deficiency.
Factor X deficiency (X as Roman numeral ten) is a bleeding disorder characterized by a lack in the production of factor X (FX), an enzyme protein that causes blood to clot in the coagulation cascade. Produced in the liver FX when activated cleaves prothrombin to generate thrombin in the intrinsic pathway of coagulation. This process is vitamin K dependent and enhanced by activated factor V.
The condition may be inherited or, more commonly, acquired.
X-linked recessive chondrodysplasia punctata is a type of chondrodysplasia punctata that can involve the skin, hair, and cause short stature with skeletal abnormalities, cataracts, and deafness.
This condition is also known as arylsulfatase E deficiency, CDPX1, and X-linked recessive chondrodysplasia punctata 1. The syndrome rarely affects females, but they can be carriers of the recessive allele. Although the exact number of people diagnosed with CDPX1 is unknown, it was estimated that 1 in 500,000 have CDPX1 in varying severity. This condition is not linked to a specific ethnicity. The mutation that leads to a deficiency in arylsulfatase E. (ARSE) occurs in the coding region of the gene.Absence of stippling, deposits of calcium, of bones and cartilage, shown on x-ray, does not rule out chondrodysplasia punctata or a normal chondrodysplasia punctata 1 (CDPX1) gene without mutation. Stippling of the bones and cartilage is rarely seen after childhood. Phalangeal abnormalities are important clinical features to look for once the stippling is no longer visible. Other, more severe, clinical features include respiratory abnormalities, hearing loss, cervical spine abnormalities, delayed cognitive development, ophthalmologic abnormalities, cardiac abnormalities, gastroesophageal reflux, and feeding difficulties. CDPX1 actually has a spectrum of severity; different mutations within the CDPX1 gene have different effects on the catalytic activity of the ARSE protein. The mutations vary between missense, nonsense, insertions, and deletions.
While it is indicated that people with FXII deficiency are generally asymptomatic, studies in women with recurrent miscarriages suggest an association with FXII deficiency.
The condition is of importance in the differential diagnosis to other bleeding disorders, specifically the hemophilias: hemophilia A with a deficiency in factor VIII or antihemophilic globulin, hemophilia B with a deficiency in factor IX (Christmas disease), and hemophilia C with a deficiency in factor XI. Other rare forms of bleeding disorders are also in the differential diagnosis.
There is concern that individuals with FXII deficiency are more prone to thrombophilic disease, however, this is at variance with a long term study from Switzerland.
Inherited or congenital FVII deficiency is passed on by autosomal recessive inheritance. A person needs to inherit a defective gene from both parents. People who have only one defective gene do not exhibit the disease, but can pass the gene on to half their offspring. Different genetic mutations have been described.
In persons with the congenital FVII deficiency the condition is lifelong. People with this condition should alert other family members may they also have the condition or carry the gene. In the general population the condition affects about 1 in 300,000 to 500,000 people. However, the prevalence may be higher as not all individuals may express the disease and be diagnosed.
In the acquired of FVII deficiency an insufficient amount of factor VII is produced by the liver due to liver disease, vitamin K deficiency, or certain medications (i.e. Coumadin).
Multiple sulfatase deficiency (also known as "Austin disease", and "mucosulfatidosis") is a very rare autosomal recessive lysosomal storage disease caused by a deficiency in multiple sulfatase enzymes, or in formylglycine-generating enzyme, which activates sulfatases. It is similar to mucopolysaccharidosis.
Arakawa's syndrome II is inherited in an autosomal dominant manner. This means the defective gene responsible for disorder is located on an autosome, and one copy of the defective gene is sufficient to cause the disorder when inherited from a parent who has the disorder.
Short-chain acyl-coenzyme A dehydrogenase deficiency (SCADD), also called ACADS deficiency and SCAD deficiency, is an autosomal recessive fatty acid oxidation disorder which affects enzymes required to break down a certain group of fats called short chain fatty acids.
Galactose epimerase deficiency, also known as GALE deficiency, Galactosemia III and UDP-galactose-4-epimerase deficiency, is a rare, autosomal recessive form of galactosemia associated with a deficiency of the enzyme "galactose epimerase".