Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
An increased risk of tardive dyskinesia has been associated with smoking in some studies, although a negative study does exist. There seems to be a cigarette smoke-exposure-dependent risk for TD in antipsychotic-treated patients. Elderly patients are also at a heightened risk for developing TD, as are females and those with organic brain injuries or diabetes mellitus and those with the negative symptoms of schizophrenia. TD is also more common in those that experience acute neurological side effects from antipsychotic drug treatment. Racial discrepancies in TD rate also exist, with Africans and African Americans having higher rates of TD after exposure to antipsychotics. Certain genetic risk factors for TD have been identified including polymorphisms in the genes encoding the D, 5-HT and 5-HT receptors.
Tardive dyskinesia most commonly occurs in patients with psychiatric conditions who are treated with antipsychotic medications for many years. The average prevalence rate has been estimated to be around 30% for individuals taking antipsychotic medication, such as that used to treat schizophrenia. A study being conducted at the Yale University School of Medicine has estimated that "32% of patients develop persistent tics after 5 years on major tranquilizers, 57% by 15 years, and 68% by 25 years." More drastic data was found during a longitudinal study conducted on individuals 45 years of age and older who were taking antipsychotic drugs. According to this research study, 26% of patients developed tardive dyskinesia after just one year on the medication. Another 60% of this at-risk group developed the disorder after 3 years, and 23% developed "severe" cases of tardive dyskinesia within 3 years. According to these estimates, the majority of patients will eventually develop the disorder if they remain on the drugs long enough.
Elderly patients are more prone to develop tardive dyskinesia, and elderly women are more at-risk than elderly men. The risk is much lower for younger men and women, and also more equal across the sexes. Patients who have undergone electro-convulsive therapy or have a history of diabetes or alcohol abuse also have a higher risk of developing tardive dyskinesia.
Several studies have recently been conducted comparing the prevalence rate of tardive dyskinesia with second generation, or more modern, antipsychotic drugs to that of first generation drugs. The newer antipsychotics appear to have a substantially reduced potential for causing tardive dyskinesia. However, some studies express concern that the prevalence rate has decreased far less than expected, cautioning against the overestimation of the safety of modern antipsychotics.
A physician can evaluate and diagnose a patient with tardive dyskinesia by conducting a systematic examination. The physician should ask the patient to relax, and look for symptoms like facial grimacing, eye or lip movements, tics, respiratory irregularities, and tongue movements. In some cases, patients experience nutritional problems, so a physician can also look for a gain or loss in weight.
Apart from the underlying psychiatric disorder, tardive dyskinesia may cause afflicted people to become socially isolated. It also increases the risk of dysmorphophobia and can even lead to suicide. Emotional or physical stress can increase the severity of dyskinetic movements, whereas relaxation and sedation have the opposite effect.
Two other types, primary ciliary dyskinesia and biliary dyskinesia, are caused by specific kinds of ineffective movement of the body, and are not movement disorders.
Spastic thrusting of hip area can occur in Sodemytopic Parkinson's.
Late-onset dyskinesia, also known as tardive dyskinesia, occurs after long-term treatment with an antipsychotic drug such as haloperidol (Haldol) or amoxapine (Asendin). The symptoms include tremors and writhing movements of the body and limbs, and abnormal movements in the face, mouth, and tongue including involuntary lip smacking, repetitive pouting of the lips, and tongue protrusions.
Rabbit syndrome is another type of chronic dyskinesia, while orofacial dyskinesia may be related to persistent replication of Herpes simplex virus type 1.
Paroxysmal Dyskinesia is not a fatal disease. Life can be extremely difficult with this disease depending on the severity. The prognosis of PD is extremely difficult to determine because the disease varies from person to person. The attacks for PKD can be reduced and managed with proper anticonvulsants, but there is no particular end in sight for any of the PD diseases. PKD has been described to cease for some patients after the age of 20, and two patients have reported to have a family history of the disease where PKD went into complete remission after the age of 23. With PNKD and PED, at this time, there is no proper way to determine an accurate prognosis.
All PD associated subtypes have genetic contributions and are likely to run in a families genetic history due to dominant allele mutations. Mutations of identified genes have been leading areas of research in the study and treatment of paroxysmal dyskinesia. PKD, PNKD, and PED are classified as separate subtypes because they all have different presentations of symptoms, but also, because they are believed to have different pathologies.
Interestingly, studies on diseases that are similar in nature to PD have revealed insights into the causes of movement disorders. Hypnogenic paroxysmal dyskinesia is a form of epilepsy affecting the frontal lobe. Single genes have been identified on chromosomes 15, 20, and 21, which contribute to the pathology of these epilepsy disorders. Utilizing new knowledge about pathologies of related and similar disease can shed insight on the causal relationships in paroxysmal dyskinesia.
Adiadochokinesia is a dyskinesia consisting of inability to perform the rapid alternating movements of diadochokinesia. Called also "adiadochocinesia", "adiadochokinesis", and "adiadokokinesia".
Compare with dysdiadochokinesia, which is an impairment of the ability to perform rapidly alternating movements.
Paroxysmal kinesigenic dyskinesia has been shown to be inherited in an autosomal dominant fashion. In 2011, the PRRT2 gene on chromosome 16 was identified as the cause of the disease. The researchers looked at the genetics of eight families with strong histories of PKD. They employed whole genome sequencing, along with Sanger sequencing to identify the gene that was mutated in these families. The mutations in this gene included a nonsense mutation identified in the genome of one family and an insertion mutation identified in the genome of another family. The researchers then confirmed this gene as the cause of PKD when it was not mutated in the genome of 1000 control patients. Researchers found PRRT2 mutations in 10 of 29 sporadic cases affected with PKD, thus suggests PRRT2 is the gene mutated in a subset of PKD and PKD is genetically heterogeneous. The mechanism of how PRRT2 causes PKD still requires further investigation. However, researchers suggest it may have to do with PRRT2's expression in the basal ganglia, and the expression of an associated protein, SNAP25, in the basal ganglia as well.
Paroxysmal kinesigenic choreathetosis (PKC) also called paroxysmal kinesigenic dyskinesia (PKD) is a hyperkinetic movement disorder characterized by attacks of involuntary movements, which are triggered by sudden voluntary movements. The number of attacks can increase during puberty and decrease in a person's 20s to 30s. Involuntary movements can take many forms such as ballism, chorea or dystonia and usually only affect one side of the body or one limb in particular. This rare disorder only affects about 1 in 150,000 people with PKD accounting for 86.8% of all the types of paroxysmal dyskinesias and occurs more often in males than females. There are two types of PKD, primary and secondary. Primary PKD can be further broken down into familial and sporadic. Familial PKD, which means the individual has a family history of the disorder, is more common, but sporadic cases are also seen. Secondary PKD can be caused by many other medical conditions such as multiple sclerosis (MS), stroke, pseudohypoparathyroidism, hypocalcemia, hypoglycemia, hyperglycemia, central nervous system trauma, or peripheral nervous system trauma. PKD has also been linked with infantile convulsions and choreoathetosis (ICCA) syndrome, in which patients have afebrile seizures during infancy (benign familial infantile epilepsy) and then develop paroxysmal choreoathetosis later in life. This phenomenon is actually quite common, with about 42% of individuals with PKD reporting a history of afebrile seizures as a child.
In some cases Meige's syndrome can be reversed when it is caused by medication. It has been theorized that it is related to cranio-mandibular orthopedic misalignment, a condition that has been shown to cause a number of other movement disorders (Parkinon's, tourettes, and torticollis). This theory is supported by the fact that the trigeminal nerve is sensory for blink reflex, and becomes hypertonic with craniomandibular dysfunction. Palliative treatments are available, such as botulinum toxin injections.
The main symptoms involve involuntary blinking and chin thrusting. Some patients may experience excessive tongue protrusion, squinting, light sensitivity, muddled speech, or uncontrollable contraction of the platysma muscle. Some Meige's patients also have "laryngeal dystonia" (spasms of the larynx). Blepharospasm may lead to embarrassment in social situations, and oromandibular dystonia can affect speech, making it difficult to carry on the simplest conversations. This can cause difficulty in both personal and professional contexts, and in some cases may cause patients to withdraw from social situations.
The condition tends to affect women more frequently than men.
Choreoathetosis is the occurrence of involuntary movements in a combination of chorea (irregular migrating contractions) and athetosis (twisting and writhing).
It is caused by many different diseases and agents. It is a symptom of several diseases, including Lesch-Nyhan Syndrome, phenylketonuria, and Huntington disease.
Choreoathetosis is also a common presentation of dyskinesia as a side effect of levodopa-carbidopa in the treatment of Parkinson disease.
Geniospasm is movement disorder of the mentalis muscle.
It is a benign genetic disorder linked to chromosome 9q13-q21 where there are episodic involuntary up and down movements of the chin and lower lip. The movements consist of rapid fluttering or trembling at about 8 Hz superimposed onto a once per three seconds movement of higher amplitude and occur symmetrically in the V shaped muscle. The tongue and buccal floor muscles may also be affected but to a much lesser degree.
The movements are always present but extreme episodes may be precipitated by stress, concentration or emotion and commence in early childhood.
The condition is extremely rare and in a study in 1999 only 23 families in the world were known to be affected, although it may be under-reported. Inheritance is aggressively autosomal dominant. In at least two studies the condition appeared spontaneously in the families.
The condition responds very well to regular botulinus toxin injections into the mentalis muscle which paralyse the muscle but cause no impairment of facial expression or speech.
Drugs that can trigger an oculogyric crisis include neuroleptics (such as haloperidol, chlorpromazine, fluphenazine, olanzapine), carbamazepine, chloroquine, cisplatin, diazoxide, levodopa, lithium, metoclopramide, lurasidone, domperidone, nifedipine, pemoline, phencyclidine ("PCP"), reserpine, and cetirizine, an antihistamine. High-potency neuroleptics are probably the most common cause in the clinical setting.
Other causes can include postencephalitic Parkinson's, Tourette's syndrome, multiple sclerosis, neurosyphilis, head trauma, bilateral thalamic infarction, lesions of the fourth ventricle, cystic glioma of the third ventricle, herpes encephalitis, kernicterus and juvenile Parkinson's.
Strokes are one of the most common causes of Foix-Chavany-Marie Syndrome. The type of strokes associated with this syndrome include embolic and thrombotic strokes. Strokes affecting the middle cerebral artery and the branches that pass through or near the operculum are characteristic of FCMS.
Symptoms of infections specifically HIV and Herpes simplex encephalitis can cause FCMS. Numerous lesions can develop with HIV infections, which likely result in the development of FCMS.
Immediate treatment of drug induced OGC can be achieved with intravenous antimuscarinic benzatropine or procyclidine; which usually are effective within 5 minutes, although may take as long as 30 minutes for full effect. Further doses of procyclidine may be needed after 20 minutes. Any causative new medication should be discontinued. Also can be treated with 25 mg diphenhydramine.
A major manifestation of acute rheumatic fever, Sydenham's chorea is a result of an autoimmune response that occurs following infection by group A β-hemolytic streptococci that destroys cells in the corpus striatum of the basal ganglia. Molecular mimicry to streptococcal antigens leading to an autoantibody production against the basal ganglia has long been thought to be the main mechanism by which chorea occurs in this condition. In 2012, antibodies in serum to the cell surface antigen; dopamine 2 receptor were shown in up to a third of patients in a cohort of Sydenham's chorea. Whether these antibodies represent an epi-phenomenon or are pathogenic, remains to be proven.
There are many causes of childhood chorea, including cerebrovascular accidents, collagen vascular diseases, drug intoxication, hyperthyroidism, Wilson's disease, Huntington's disease, abetalipoproteinemia, Fahr disease, biotin-thiamine-responsive basal ganglia disease due to mutations in the SLC19A3 gene, Lesch-Nyhan syndrome, and infectious agents.
Sydenham's chorea is characterized by the abrupt onset (sometimes within a few hours) of neurologic symptoms, classically chorea, usually affecting all four limbs. Other neurologic symptoms include behavior change, dysarthria, gait disturbance, loss of fine and gross motor control with resultant deterioration of handwriting, headache, slowed cognition, facial grimacing, fidgetiness and hypotonia. Also, there may be tongue fasciculations ("bag of worms") and a "milk sign", which is a relapsing grip demonstrated by alternate increases and decreases in tension, as if hand milking.
Non-neurologic manifestations of acute rheumatic fever are carditis, arthritis, erythema marginatum, and subcutaneous nodules.
The PANDAS (pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections) syndrome is similar, but is not characterized by Sydenham's motor dysfunction. PANDAS presents with tics and/or a psychological component (e.g., OCD) and occurs much earlier, days to weeks after GABHS infection rather than 6–9 months later. It may be confused with other conditions such as lupus and Tourette syndrome.
Movements cease during sleep, and the disease usually resolves after several months. Unlike in Huntington's disease, which is generally of adult onset and associated with an unremitting autosomal dominant movement disorder and dementia, neuroimaging in Sydenham's chorea is normal and other family members are unaffected. Other disorders that may be accompanied by chorea include abetalipoproteinemia, ataxia-telangiectasia, biotin-thiamine-responsive basal ganglia disease, Fahr disease, familial dyskinesia-facial myokymia (Bird-Raskind syndrome) due to an ADCY5 gene mutation, glutaric aciduria, Lesch-Nyhan syndrome, mitochondrial disorders, Wilson disease, hyperthyroidism, lupus erythematosus, pregnancy (chorea gravidarum), and side effects of certain anticonvulsants or psychotropic agents.
Macroglossia is uncommon, and usually occurs in children. Macroglossia has been reported to have a positive family history in 6% of cases. The National Organization of Rare Disorders lists macroglossia as a rare disease (less than 200 000 individuals in the US).
Messner "et al." studied ankyloglossia and infant feeding. Thirty-six infants with ankyloglossia were compared to a control group without ankyloglossia. The two groups were followed for six months to assess possible breastfeeding difficulties; defined as nipple pain lasting more than six weeks, or infant difficulty latching onto or staying onto the mother’s breast. Twenty-five percent of mothers of infants with ankyloglossia reported breastfeeding difficulty compared with only 3% of the mothers in the control group. The study concluded that ankyloglossia can adversely affect breastfeeding in certain infants. Infants with ankyologlossia do not, however, have such big difficulties when feeding from a bottle. Limitations of this study include the small sample size and the fact that the quality of the mother’s breastfeeding was not assessed.
Wallace and Clark also studied breastfeeding difficulties in infants with ankyloglossia. They followed 10 infants with ankyloglossia who underwent surgical tongue tie division. Eight of the ten mothers experienced poor infant latching onto the breast, 6/10 experienced sore nipples and 5/10 experienced continual feeding cycles; 3/10 mothers were exclusively breastfeeding. Following a tongue-tie division, 4/10 mothers noted immediate improvements in breastfeeding, 3/10 mothers did not notice any improvements and 6/10 mothers continued breastfeeding for at least four months after the surgery. The study concluded that tongue-tie division may be a possible benefit for infants experiencing breastfeeding difficulties due to ankyloglossia and further investigation is warranted. The limitations of this study include the small sample size and the fact that there was not a control group. In addition, the conclusions were based on subjective parent report as opposed to objective measures.
Opinion varies regarding how frequently ankyloglossia truly causes problems. Some professionals believe it is rarely symptomatic, whereas others believe it is associated with a variety of problems. The disagreement among professionals was documented in a study by Messner and Lalakea (2000). The authors sent a survey to a total of 1598 otolaryngologists, pediatricians, speech-language pathologists and lactation consultants with questions to ascertain their beliefs on ankyloglossia. 797 of the surveys were fully completed and used in the study. It was found that 69% of lactation consultants, but only a minority of pediatricians answered that ankyloglossia is frequently associated with feeding difficulties; 60% of otolaryngologists and 50% of speech pathologists answered that ankyloglossia is sometimes associated with speech difficulties compared to only 23% of pediatricians; 67% of otolaryngologists compared with 21% of pediatricians answered that ankyloglossia is sometimes associated with social and mechanical difficulties. Limitations of this study include a reduced sample size due to unreturned or incomplete surveys.
Macroglossia may be caused by a wide variety of congenital and acquired conditions. Isolated macroglossia has no determinable cause. The most common causes of tongue enlargement are vascular malformations (e.g. lymphangioma or hemangioma) and muscular hypertrophy (e.g. Beckwith–Wiedemann syndrome or hemihyperplasia). Enlargement due to lymphangioma gives the tongue a pebbly appearance with multiple superficial dilated lymphatic channels. Enlargement due to hemihyperplasia is unilateral. In edentulous persons, a lack of teeth leaves more room for the tongue to expand into laterally, which can create problems with wearing dentures and may cause pseudomacroglossia.
Amyloidosis is an accumulation of insoluble proteins in tissues that impedes normal function. This can be a cause of macroglossia if amyloid is deposited in the tissues of the tongue, which gives it a nodular appearance. Beckwith–Wiedemann syndrome is a rare hereditary condition, which may include other defects such as omphalocele, visceromegaly, gigantism or neonatal hypoglycemia.
The tongue may show a diffuse, smooth generalized enlargement. The face may show maxillary hypoplasia causing relative mandibular prognathism. Apparent macroglossia can also occur in Down syndrome. The tongue has a papillary, fissured surface. Macroglossia may be a sign of hypothyroid disorders.
Other causes include mucopolysaccharidosis, neurofibromatosis, multiple endocrine neoplasia type 2B, myxedema, acromegaly, angioedema, tumors (e.g. carcinoma), Glycogen storage disease type 2, Simpson-Golabi-Behmel syndrome, Triploid Syndrome, trisomy 4p, fucosidosis, alpha-mannosidosis, Klippel-Trenaunay-Weber syndrome, cardiofaciocutaneous syndrome, Ras pathway disorders, transient neonatal diabetes, and lingual thyroid.
Research has revealed that a number of genetic disorders, not previously thought to be related, may indeed be related as to their root cause. Joubert syndrome is one such disease. It is a member of an emerging class of diseases called ciliopathies.
The underlying cause of the ciliopathies may be a dysfunctional molecular mechanism in the primary cilia structures of the cell, organelles which are present in many cellular types throughout the human body. The cilia defects adversely affect "numerous critical developmental signaling pathways" essential to cellular development and thus offer a plausible hypothesis for the often multi-symptom nature of a large set of syndromes and diseases.
Currently recognized ciliopathies include Joubert syndrome, primary ciliary dyskinesia (also known as Kartagener Syndrome), Bardet-Biedl syndrome, polycystic kidney disease and polycystic liver disease, nephronophthisis, Alstrom syndrome, Meckel-Gruber syndrome and some forms of retinal degeneration.
Joubert syndrome type 2 is disproportionately frequent among people of Jewish descent.
In utero exposure to cocaine and other street drugs can lead to agenesis of corpus callosum.