Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Fields' disease is considered to be one of the rarest known diseases in the world, with only two diagnosed cases in history. The frequency of this disease is therefore 1 in approximately 3.75 billion (although since the disease manifested in identical twins, the actual frequency is 1 in approximately 7.5 billion). It is named after Welsh twins Catherine and Kirstie Fields, of Llanelli. Fields' disease is a neuromuscular disease, causing muscular degeneration.
The disease was first noticed when the twins were around the age of four. Doctors have been unable to identify it and have not been able to match it to any known diseases. As a result, the Fields sisters have undergone numerous tests, but no treatment has yet been found. No definitive cause has been determined and doctors have generally concluded that they were born with it.
The disease appears to be progressive in nature. The Fields twins started having problems when they were four years old. By the time they had reached the age of nine, they were having difficulty walking and needed frames to assist them with walking. Their muscles have been gradually deteriorating over time. The disease affects the twins' nerves, causing them to make involuntary muscle movements such as trembling in the hands.
The extent of the disease is still unknown as the two women are only 21. However, the disease has had no apparent effect on their brains or personalities. Doctors do not know if the disease is fatal and, if so, what the life expectancy of one with this disease is. If the cause of the disease is genetic, there is a chance that the twins could pass it on to their future children.
The term “monger” has ancient roots, providing the basis for many common compound forms such as cheesemonger, fishmonger, and fleshmonger for those who peddle such wares respectively. “Disease mongering” as a label for the "invention" or promotion of diseases in order to capitalize on their treatment was first used in 1992 by health writer Lynn Payer, who applied it to the Listerine mouthwash campaign against halitosis (bad breath).
Payer defined disease mongering as a set of practices which include the following:
- Stating that normal human experiences are abnormal and in need of treatment
- Claiming to recognize suffering which is not present
- Defining a disease such that a large number of people have it
- Defining a disease's cause as some ambiguous deficiency or hormonal imbalance
- Associating a disease with a public relations spin campaign
- Directing the framing of public discussion of a disease
- Intentionally misusing statistics to exaggerate treatment benefits
- Setting a dubious clinical endpoint in research
- Advertising a treatment as without side effect
- Advertising a common symptom as a serious disease
The incidence of conditions not previously defined as illness being medicalised as "diseases" is difficult to scientifically assess due to the inherent social and political nature of the definition of what constitutes a disease, and what aspects of the human condition should be managed according to a medical model. For example, halitosis, the condition which prompted Payer to coin the phrase "disease mongering", isn't merely an imagined social stigma but can stem from any of a wide spectrum of conditions spanning from bacterial infection of the gums to kidney failure, and is recognized by the Scientific Council of the American Dental Association as "a recognizable condition which deserves professional attention".
White band disease (Acroporid white syndrome) is a coral disease that affects acroporid corals and is distinguishable by the white band of dead coral tissue that it forms. The disease completely destroys the coral tissue of Caribbean acroporid corals, specifically elkhorn coral ("Acropora palmata") and staghorn coral ("A. cervicornis"). The disease exhibits a pronounced division between the remaining coral tissue and the exposed coral skeleton. These symptoms are similar to white plague, except that white band disease is only found on acroporid corals, and white plague has not been found on any acroporid corals. It is part of a class of similar disease known as "white syndromes", many of which may be linked to species of "Vibrio" bacteria. While the pathogen for this disease has not been identified, "Vibrio carchariae" may be one of its factors. The degradation of coral tissue usually begins at the base of the coral, working its way up to the branch tips, but it can begin in the middle of a branch.
]
Disease mongering is a term for the practice of widening the diagnostic boundaries of illnesses and aggressively promoting their public awareness in order to expand the markets for treatment.
Among the entities benefiting from selling and delivering treatments are pharmaceutical companies, physicians, alternative practitioners and other professional or consumer organizations. It is distinct from the promulgation of bogus or unrecognised diagnoses.
Urbach–Wiethe disease is very rare; there are fewer than 300 reported cases in medical literature. Although Urbach–Wiethe disease can be found worldwide, almost a quarter of reported diagnoses are in South Africa. Many of these are in patients of Dutch, German, and Khoisan ancestry. This high frequency is thought to be due to the founder effect. Due to its recessive genetic cause and the ability to be a carrier of the disease without symptoms, Urbach–Wiethe disease often runs in families. In some regions of South Africa, up to one in 12 individuals may be carriers of the disease. Most of the case studies involving Urbach–Wiethe disease patients involve only one to three cases and these cases are often in the same family. Due to its low incidence, it is difficult to find a large enough number of cases to adequately study the disease.
There are no currently known causes of this disease. There are studies currently proposing several theories of the causes which include inflammation of the adipose tissue, nervous system malfunction and endocrine malfunction. None of the theories that are currently proposed have been found viable. Since little is known about Dercum's disease, there are currently no known modes of prevention. Some hypotheses state that maintaining a healthy weight and diet can help prevent Dercum's although it has not been proven.
Dercum's disease can affect people of any gender and of any age. The majority of cases are linked to women between the ages of 45 and 60, who are overweight and postmenopausal. Due to the difficulty of diagnosis of this disease, many cases are underreported or misdiagnosed and it is difficult to understand what part of the population is affected by it the most.
The cause of Grover's disease is unknown. Suspected triggers of disease activity include heat and sweating, sunlight, and adverse reaction to medications as well as ionizing radiation, end-stage renal disease/hemodialysis, and mechanical irritation or prolonged bed rest.
Some cases of Grover's disease have been associated with medications such as sulfadoxine-pyrimethamine, ribavirin, cetuximab, and interleukin-4 [1,8-15]. One series of 300 patients with Grover's disease reported an association with other coexisting dermatoses including atopic dermatitis, contact dermatitis, and xerosis cutis. Finally, smaller series have detailed an association with pyoderma gangrenosum, bacterial and viral infections, and occasionally, malignancies.
In laboratory animals, prevention includes a low-stress environment, an adequate amount of nutritional feed, and appropriate sanitation measurements. Because animals likely ingest bacterial spores from contaminated bedding and feed, regular cleaning is a helpful method of prevention. No prevention methods are currently available for wild animal populations.
Lhermitte–Duclos disease is a rare entity; approximately 222 cases of LDD have been reported in medical literature. Symptoms of the disease most commonly manifest in the third and fourth decades of life, although it may onset at any age. Men and women are equally affected, and there is not any apparent geographical pattern.
Bright's disease was historically 'treated' with warm baths, blood-letting, squill, digitalis, mercuric compounds, opium, diuretics, laxatives, and dietary therapy, including abstinence from alcoholic drinks, cheese and red meat. Arnold Ehret was diagnosed with Bright's disease and pronounced incurable by 24 of Europe's most respected doctors; he designed "The Mucusless Diet Healing System", which apparently cured his illness. William Howard Hay, MD had the illness and, it is claimed, cured himself using the Hay diet.
Life expectancy with Fabry disease for males was 58.2 years, compared with 74.7 years in the general population, and for females 75.4 years compared with 80.0 years in the general population, according to registry data from 2001 to 2008. The most common cause of death was cardiovascular disease, and most of those had received kidney replacements.
This disease is more common in women and an association with the gene FLT4 has been described. FLT4 codes for VEGFR-3, which is implicated in development of the lymphatic system.
Milroy's disease is also known as primary or hereditary lymphedema type 1A or early onset lymphedema.
It is a very rare disease with only about 200 cases reported in the medical literature. Milroy's disease is an autosomal dominant condition caused by a mutation in the FLT4 gene which encodes of the vascular endothelial growth factor receptor 3 (VEGFR-3) gene located on the long arm (q) on chromosome 5 (5q35.3).
In contrast to Milroy's disease (early onset lymphedema type 1A,) which typically has its onset of swelling and edema at birth or during early infancy, hereditary lymphedema type II, known as Meige disease, has its onset around the time of puberty. Meige disease is also an autosomal dominant disease. It has been linked to a mutations in the ‘forkhead’ family transcription factor (FOXC2) gene located on the long arm of chromosome 16 (16q24.3). About 2000 cases have been identified. A third type of hereditary lymphedema, that has an onset after the age of 35 is known as lymph-edema tarda.
Morbidity and mortality range from both extremes as the significance correlate with the underlying systemic disease.
Pogosta disease is a viral disease, established to be identical with other diseases, Karelian fever and Ockelbo disease. The names are derived from the words Pogosta, Karelia and Ockelbo, respectively.
The symptoms of the disease include usually rash, as well as mild fever and other flu-like symptoms; in most cases the symptoms last less than 5 days. However, in some cases, the patients develop a painful arthritis. There are no known chemical agents available to treat the disease.
It has long been suspected that the disease is caused by a Sindbis-like virus, a positive-stranded RNA virus belonging to the Alphavirus genus and family Togaviridae. In 2002 a strain of Sindbis was isolated from patients during an outbreak of the Pogosta disease in Finland, confirming the hypothesis.
This disease is mainly found in the Eastern parts of Finland; a typical Pogosta disease patient is a middle-aged person who has been infected through a mosquito bite while picking berries in the autumn. The prevalence of the disease is about 100 diagnosed cases every year, with larger outbreaks occurring in 7-year intervals.
Infants with Schindler disease tend to die within 4 years of birth, therefore, treatment for this form of the disease is mostly palliative. However, Type II Schindler disease, with its late onset of symptoms, is not characterized by neurological degeneration. There is no known cure for Schindler disease, but bone marrow transplants have been trialed, as they have been successful in curing other glycoprotein disorders.
The prevalence and incidence of Grover's disease have not been firmly established. In a study from Switzerland, Grover's disease was diagnosed in just 24 of more than 30,000 skin biopsies [4]. Grover's disease is mainly seen in males over the age of forty.
Grover's disease affects chiefly white adults in the fifth decade or later, and appears to be around 1.6 to 2.1 times more common in men than in women. Grover's disease appears less commonly in darker-skinned individuals.
Mortality is indirect and caused by complications. After cholangitis occurs, patients typically die within 5–10 years.
There seems to be beneficial responses to clindamycin therapy as the lesions regress. This leads to the hypothesis that microorganisms may be playing a role in the initial stages of Kyrle disease.
A family with Kyrle disease were examined which their skin lesions were benign. However, when three of the young adult members were closely examined, they had posterior subcapsular cataracts and two of those three developed multiple tiny yellow-brown anterior stromal corneal opacities. In order to determine if there is any correlation between Kyrle disease and the ocular observations, more cases of Kyrle disease are to be analyzed.
All in all, since Kyrle disease is relatively rare, more cases need to be studied and analyzed in order to understand the underlying pathogenesis and to improve the management of the disease.
There is no specific treatment for Farber disease. Corticosteroids may be prescribed to relieve pain. Bone marrow transplants may improve granulomas (small masses of inflamed tissue) on patients with little or no lung or nervous system complications. Older patients may have granulomas surgically reduced or removed.
While risk factors vary with age and gender, most of the common chronic diseases in the US are caused by dietary, lifestyle and metabolic risk factors that are also responsible for the resulting mortality. Therefore, these conditions might be prevented by behavioral changes, such as quitting smoking, adopting a healthy diet, and increasing physical activity. Social determinants are important risk factors for chronic diseases. Social factors, e.g., socioeconomic status, education level, and race/ethnicity, are a major cause for the disparities observed in the care of chronic disease. Lack of access and delay in receiving care result in worse outcomes for patients from minorities and underserved populations. Those barriers to medical care complicate patients monitoring and continuity in treatment.
In the US, Minorities and low-income populations are less likely to access and receive preventive services necessary to detect conditions at an early stage.
The majority of US health care and economic costs associated with medical conditions are for the costs of chronic diseases and conditions and associated health risk behaviors. Eighty-four percent of all health care spending in 2006 was for the 50% of the population who have one or more chronic medical conditions (CDC, 2014).
Urbach–Wiethe disease is typically not a life-threatening condition. The life expectancy of these patients is normal as long as the potential side effects of thickening mucosa, such as respiratory obstruction, are properly addressed. Although this may require a tracheostomy or carbon dioxide laser surgery, such steps can help ensure that individuals with Urbach–Wiethe disease are able to live a full life. Oral dimethyl sulfoxide (DMSO) has been shown to reduce skin lesions, helping to minimize discomfort for these individuals.
Bright's disease is a historical classification of kidney diseases that would be described in modern medicine as acute or chronic nephritis. It was characterized by swelling, the presence of albumin in the urine and was frequently accompanied by high blood pressure and heart disease.
Cardiovascular disease affects low- and middle-income countries even more than high-income countries. There is relatively little information regarding social patterns of cardiovascular disease within low- and middle-income countries, but within high-income countries low income and low educational status are consistently associated with greater risk of cardiovascular disease. Policies that have resulted in increased socio-economic inequalities have been associated with greater subsequent socio-economic differences in cardiovascular disease implying a cause and effect relationship. Psychosocial factors, environmental exposures, health behaviours, and health-care access and quality contribute to socio-economic differentials in cardiovascular disease.
Currently, antibiotic drugs such as penicillin or tetracycline are the only effective methods for disease treatment. Within wild populations, disease control consists of reducing the amount of bacterial spores present in the environment. This can be done by removing contaminated carcasses and scat.