Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Patients with CHH usually suffer from cellular immunodeficiency. In the study of 108 Finnish patients with CHH there was detected mild to moderate form of lymphopenia, decreased delayed type of hypersensitivity and impaired responses to phytohaemagglutinin. This leads to susceptibility to and, in some more severe cases, mortality from infections early in childhood. There has also been detected combined immunodeficiency in some patients
Patients with CHH often have increased predispositions to malignancies.
Early journal reports of boomerang dysplasia suggested X-linked recessive inheritance, based on observation and family history. It was later discovered, however, that the disorder is actually caused by a genetic mutation fitting an autosomal dominant genetic profile.
Autosomal dominant inheritance indicates that the defective gene responsible for a disorder is located on an autosome, and only one copy of the gene is sufficient to cause the disorder, when inherited from a parent who has the disorder.
Boomerang dysplasia, although an autosomal dominant disorder, is "not" inherited because those afflicted do not live beyond infancy. They cannot pass the gene to the next generation.
Fibrochondrogenesis is quite rare. A 1996 study from Spain determined a national minimal prevalence for the disorder at 8 cases out of 1,158,067 live births.
A United Arab Emirates (UAE) University report, from early 2003, evaluated the results of a 5-year study on the occurrence of a broad range of osteochondrodysplasias. Out of 38,048 newborns in Al Ain, over the course of the study period, fibrochondrogenesis was found to be the most common of the recessive forms of osteochondrodysplasia, with a prevalence ratio of 1.05:10,000 births.
While these results represented the most common occurrence within the group studied, they do not dispute the rarity of fibrochondrogenesis. The study also included the high rate of consanguinous marriages as a prevailing factor for these disorders, as well as the extremely low rate of diagnosis-related pregnancy terminations throughout the region.
Achondrogenesis is a number of disorders that are the most severe form of congenital chondrodysplasia (malformation of bones and cartilage). These conditions are characterized by a small body, short limbs, and other skeletal abnormalities. As a result of their serious health problems, infants with achondrogenesis are usually born prematurely, are stillborn, or die shortly after birth from respiratory failure. Some infants, however, have lived for a while with intensive medical support.
Researchers have described at least three forms of achondrogenesis, designated as Achondrogenesis type 1A, achondrogenesis type 1B and achondrogenesis type 2. These types are distinguished by their signs and symptoms, inheritance pattern, and genetic cause. Other types of achondrogenesis may exist, but they have not been characterized or their cause is unknown.
Achondrogenesis type 1A is caused by a defect in the microtubules of the Golgi apparatus. In mice, a nonsense mutation in the thyroid hormone receptor interactor 11 gene (Trip11), which encodes the Golgi microtubule-associated protein 210 (GMAP-210), resulted in defects similar to the human disease. When their DNA was sequenced, human patients with achondrogenesis type 1A also had loss-of-function mutations in GMAP-210. GMAP-210 moves proteins from the endoplasmic reticulum to the Golgi apparatus. Because of the defect, GMAP-210 is not able to move the proteins, and they remain in the endoplasmic reticulum, which swells up. The loss of Golgi apparatus function affects some cells, such as those responsible for forming bone and cartilage, more than others.
Achondrogenesis type 1B is caused by a similar mutation in SLC26A2, which encodes a sulfate transporter.
Achondroplasia is caused by a mutation in fibroblast growth factor receptor 3 (FGFR3). In normal development FGFR3 has a negative regulatory effect on bone growth. In achondroplasia, the mutated form of the receptor is constitutively active and this leads to severely shortened bones. The effect is genetically dominant, with one mutant copy of the FGFR3 gene being sufficient to cause achondroplasia, while two copies of the mutant gene are invariably fatal (recessive lethal) before or shortly after birth (known as a lethal allele). A person with achondroplasia thus has a 50% chance of passing dwarfism to each of their offspring. People with achondroplasia can be born to parents that do not have the condition due to spontaneous mutation.
Studies have demonstrated that new gene mutations for achondroplasia are exclusively inherited from the father and occur during spermatogenesis; it is theorized that oogenesis has some regulatory mechanism that prevents the mutation from being passed on in females.
There are two other syndromes with a genetic basis similar to achondroplasia: hypochondroplasia and thanatophoric dysplasia.
Platyspondylic lethal skeletal dysplasia, Torrance type is a severe disorder of bone growth. People with this condition have very short arms and legs, a small chest with short ribs, underdeveloped pelvic bones, and unusually short fingers and toes (brachydactyly). This disorder is also characterized by flattened spinal bones (platyspondyly) and abnormal curvature of the spine (lordosis).
As a result of these serious skeletal problems, many infants with platyspondylic lethal skeletal dysplasia, Torrance type are born prematurely, are stillborn, or die shortly after birth from respiratory failure. A few affected people with milder signs and symptoms have lived into adulthood, however.
This condition is one of a spectrum of skeletal disorders caused by mutations in the "COL2A1" gene. This gene provides instructions for making a protein that forms type II collagen. This type of collagen is found mostly in cartilage and in the clear gel that fills the eyeball (the vitreous). It is essential for the normal development of bones and other tissues that form the body's supportive framework (connective tissues).
Mutations in the "COL2A1" gene interfere with the assembly of type II collagen molecules, resulting in a reduced amount of this type of collagen in the body. Instead of forming collagen molecules, the abnormal "COL2A1" protein builds up in cartilage cells (chondrocytes). These changes disrupt the normal development of bones and other connective tissues, leading to the skeletal abnormalities characteristic of platyspondylic lethal skeletal dysplasia, Torrance type.
This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. In some cases, an affected person inherits the mutation from one affected parent. Other cases may result from new mutations in the gene. These cases occur in people with no history of the disorder in their family.
Gene based therapy is being studied. In June 2015, BioMarin announced positive results of their Phase 2 study, stating that 10 children experienced a mean increase of 50% in their annualized growth velocity.
Mutations in the "Filamin B (FLNB)" gene cause boomerang dysplasia. FLNB is a cytoplasmic protein that regulates intracellular communication and signalling by cross-linking the protein actin to allow direct communication between the cell membrane and cytoskeletal network, to control and guide proper skeletal development. Disruptions in this pathway, caused by FLNB mutations, result in the bone and cartilage abnormalities associated with boomerang dysplasia.
Chondrocytes, which also have a role in bone development, are susceptible to these disruptions and either fail to undergo ossification, or ossify incorrectly.
FLNB mutations are involved in a spectrum of lethal bone dysplasias. One such disorder, atelosteogenesis type I, is very similar to boomerang dysplasia, and several symptoms of both often overlap.
The mechanism of rhizomelic chondrodysplasia punctata in the case of "type 1" of this condition one finds that peroxisome objective is PEX7, in peroxisome assembly.There are 3 pathways that "count on" PEX7 and are:
This condition is a consequence of mutations in the PEX7 gene, GNPAT gene (which is located on chromosome 1) and AGPS gene, the condition is acquired in a autosomal recessive manner.
Fibrochondrogenesis is inherited in an autosomal recessive pattern. This means that the defective gene responsible for the disorder is located on an autosome, and two copies of the gene — one copy inherited from each parent — are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder each carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder. Currently, no specific genetic mutation has been established as the cause of fibrochondrogenesis.
Omphalocele is a congenital feature where the abdominal wall has an opening, partially exposing the abdominal viscera (typically, the organs of the gastrointestinal tract). Fibrochondrogenesis is believed to be related to omphalocele
type III, suggesting a possible genetic association between the two disorders.
X-linked recessive chondrodysplasia punctata is a type of chondrodysplasia punctata that can involve the skin, hair, and cause short stature with skeletal abnormalities, cataracts, and deafness.
This condition is also known as arylsulfatase E deficiency, CDPX1, and X-linked recessive chondrodysplasia punctata 1. The syndrome rarely affects females, but they can be carriers of the recessive allele. Although the exact number of people diagnosed with CDPX1 is unknown, it was estimated that 1 in 500,000 have CDPX1 in varying severity. This condition is not linked to a specific ethnicity. The mutation that leads to a deficiency in arylsulfatase E. (ARSE) occurs in the coding region of the gene.Absence of stippling, deposits of calcium, of bones and cartilage, shown on x-ray, does not rule out chondrodysplasia punctata or a normal chondrodysplasia punctata 1 (CDPX1) gene without mutation. Stippling of the bones and cartilage is rarely seen after childhood. Phalangeal abnormalities are important clinical features to look for once the stippling is no longer visible. Other, more severe, clinical features include respiratory abnormalities, hearing loss, cervical spine abnormalities, delayed cognitive development, ophthalmologic abnormalities, cardiac abnormalities, gastroesophageal reflux, and feeding difficulties. CDPX1 actually has a spectrum of severity; different mutations within the CDPX1 gene have different effects on the catalytic activity of the ARSE protein. The mutations vary between missense, nonsense, insertions, and deletions.
Cartilage–hair hypoplasia (CHH), also known as McKusick type metaphyseal chondrodysplasia, is a rare genetic disorder. It is a highly pleiotropic disorder that clinically manifests by form of short-limbed dwarfism due to skeletal dysplasia, variable level of immunodeficiency and predisposition to malignancies in some cases. It was first reported in 1965 by McKusick et al. Actor Verne Troyer is affected with this form of dwarfism, as was actor Billy Barty, who was renowned for saying "The name of my condition is Cartilage Hair Syndrome Hypoplasia, but you can just call me Billy."
Chondrodysplasia punctata is a clinically and genetically diverse group of rare diseases, first described by Erich Conradi (1882–1968), that share the features of stippled epiphyses and skeletal changes.
Types include:
- Rhizomelic chondrodysplasia punctata , ,
- X-linked recessive chondrodysplasia punctata
- Conradi-Hünermann syndrome
- Autosomal dominant chondrodysplasia punctata
CDPX1 activity may be inhibited by warfarin because it is believed that ARSE has enzymatic activity in a vitamin K producing biochemical pathway. Vitamin K is also needed for controlling binding of calcium to bone and other tissues within the body.
Schmid metaphyseal chondrodysplasia is a type of chondrodysplasia associated with a deficiency of collagen, type X, alpha 1.
Unlike other "rickets syndromes", affected individuals have normal serum calcium, phosphorus, and urinary amino acid levels. Long bones are short and curved, with widened growth plates and metaphyses.
It is named for the German researcher F. Schmid, who characterized it in 1949.
Pacman dysplasia (alternatively known as epiphyseal stippling with osteoclastic hyperplasia) is a lethal autosomal recessive skeletal dysplasia. The dysplasia is present during fetal development.
One Finnish study which followed 25 cases from 18 families found that half the infants died within 3 days of birth and the other half died before 4 months of age.
Majewski's polydactyly syndrome, also known as polydactyly with neonatal chondrodystrophy type I, short rib-polydactyly syndrome type II, and short rib-polydactyly syndrome, is a lethal form of neonatal dwarfism characterized by osteochondrodysplasia (skeletal abnormalities in the development of bone and cartilage) with a narrow thorax, polysyndactyly, disproportionately short tibiae, thorax dysplasia, hypoplastic lungs and respiratory insufficiency. Associated anomalies include protruding abdomen, brachydactyly, peculiar faces, hypoplastic epiglottis, cardiovascular defects, renal cysts, and also genital anomalies. Death occurs before or at birth.
The disease is inherited in an autosomal recessive pattern.
It was characterized in 1971.
Treatment is symptomatic, often addressing indicators associated with peripheral pulmonary artery stenosis. Laryngotracheal calcification resulting in dyspnea and forceful breathing can be treated with bronchodilators including the short and long-acting β2-agonists, and various anticholinergics. Prognosis is good, yet life expectancy depends on the severity and extent of diffuse pulmonary and arterial calcification.
GRACILE syndrome is a very rare autosomal recessive genetic disorder, one of the Finnish heritage diseases. It is caused by mutation in BCS1L gene that occurs in at least 1 out of 47,000 live births in Finnish people.
GRACILE is an acronym for growth retardation, amino aciduria (amino acids in the urine), cholestasis, iron overload, lactic acidosis, and early death. Other names for this syndrome include Finnish lethal neonatal metabolic syndrome (FLNMS); lactic acidosis, Finnish, with hepatic hemosiderosis; and Fellman syndrome.
Raine syndrome (RNS), also called osteosclerotic bone dysplasia, is a rare autosomal recessive congenital disorder characterized by craniofacial anomalies including microcephaly, noticeably low set ears, osteosclerosis, a cleft palate, gum hyperplasia, a hypoplastic nose, and eye proptosis. It is considered to be a lethal disease, and usually leads to death within a few hours of birth. However, a recent report describes two studies in which children with Raine Syndrome have lived to 8 and 11 years old, so it is currently proposed that there is a milder expression that the phenotype can take (Simpson 2009).
It was first characterized in 1989 in a report that was published on an infant that had been born with an unknown syndrome, that later came to be called Raine Syndrome.
The current research describes Raine Syndrome as a neonatal osteosclerotic bone dysplasia, indicated by its osteosclerotic symptoms that are seen in those suffering from the disease. It has been found that a mutation in the gene FAM20C is the cause of the Raine Syndrome phenotype. This microdeletion mutation leads to an unusual chromosome 7 arrangement. The milder phenotypes of Raine Syndrome, such as those described in Simpson’s 2007 report, suggest that Raine Syndrome resulting from missense mutations may not be as lethal as the other described mutations (OMIM). This is supported by findings from Fradin et al. (2011), who reported on children with missense mutations to FAM20C and lived to ages 1 and 4 years, relatively much longer than the life spans of the previously reported children. Simpson et al.’s (2007) report states that to date, effected individuals have had chromosome 7 uniparental isodisomy and a 7p telomeric microdeletion. They had abnormal chromosome 7 arrangements, with microdeletions of their D7S2477 and D7S1484 markers (Simpson 2007).
Raine Syndrome appears to be an autosomal recessive disease. There are reports of recurrence in children born of the same parents, and an increased occurrence in children of closely related, genetically similar parents. Individuals with Raine Syndrome were either homozygous or compound heterozygous for the mutation of FAM20C. Also observed have been nonsynonomous mutation and splice-site changes (Simpson et al. 2007).
FAM20C, located on chromosome 7p22.3, is an important molecule in bone development. Studies in mice have demonstrated its importance in the mineralization of bones in teeth in early development (OMIM, Simpson et al. 2007, Wang et al. 2010). FAM20C stands for “family with sequence similarity 20, member C.” It is also commonly referred to as DMP-4. It is a Golgi-enriched fraction casein kinase and an extracellular serine/threonine protein kinase. It is 107,743 bases long, with 10 exons and 584 amino acids (Weizmann Institute of Science).
Keutel syndrome (KS) is a rare autosomal recessive genetic disorder characterized by abnormal diffuse cartilage calcification, hypoplasia of the mid-face, peripheral pulmonary stenosis, hearing loss, short distal phalanges (tips) of the fingers and mild mental retardation. Individuals with KS often present with peripheral pulmonary stenosis, brachytelephalangism, sloping forehead, midface hypoplasia, and receding chin. It is associated with abnormalities in the gene coding for matrix gla protein (MGP). Being an autosomal recessive disorder, it may be inherited from two unaffected, abnormal MGP-carrying parents. Thus, people who inherit two affected MGP genes will likely inherit KS.
It was first identified in 1972 as a novel rare genetic disorder sharing similar symptoms with chondrodysplasia punctata. Multiple forms of chondrodysplasia punctata share symptoms consistent with KS including abnormal cartilage calcification, forceful respiration, brachytelephalangism, hypotonia, psychomotor delay, and conductive deafness, yet peripheral pulmonary stenosis remains unique to KS.
No chromosomal abnormalities are reported in affected individuals, suggesting that familial consanguinity relates to the autosomal recessive mode of inheritance. Also, despite largely abnormal calcification of regions including the larynx, tracheobronchial tree, nose, pinna (anatomy), and epiglottis, patients exhibit normal serum calcium and phosphate levels.
Melnick–Needles syndrome (MNS), also known as Melnick–Needles osteodysplasty, is an extremely rare congenital disorder that affects primarily bone development. Patients with Melnick–Needles syndrome have typical faces (exophthalmos, full cheeks, micrognathia and malalignment of teeth), flaring of the metaphyses of long bones, s-like curvature of bones of legs, irregular constrictions in the ribs, and sclerosis of base of skull.
In males, the disorder is nearly always lethal in infancy. Lifespan of female patients might not be affected.
Melnick–Needles syndrome is associated with mutations in the "FLNA" gene and is inherited in an X-linked dominant manner. As with many genetic disorders, there is no known cure to MNS.
The disorder was first described by John C. Melnick and Carl F. Needles in 1966 in two multi-generational families.
Chondrodysplasia Blomstrand (also known as Blomstrand's lethal chondrodysplasia) is a rare disorder caused by mutation of the parathyroid hormone receptor resulting in the absence of a functioning PTHR1. It results in ossification of the endocrine system and intermembraneous tissues and advanced skeletal maturation