Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Many people of East Asian descent are prone to developing angle closure glaucoma due to shallower anterior chamber depths, with the majority of cases of glaucoma in this population consisting of some form of angle closure. Higher rates of glaucoma have also been reported for Inuit populations, compared to white populations, in Canada and Greenland.
No clear evidence indicates vitamin deficiencies cause glaucoma in humans. It follows, then, that oral vitamin supplementation is not a recommended treatment for glaucoma. Caffeine increases intraocular pressure in those with glaucoma, but does not appear to affect normal individuals.
Low vitamin C intake and serum levels have been associated with greater cataract rates. However, use of supplements of vitamin C has not demonstrated benefit.
Cigarette smoking has been shown to double the rate of nuclear sclerotic cataracts and triple the rate of posterior subcapsular cataracts. Evidence is conflicting over the effect of alcohol. Some surveys have shown a link, but others which followed people over longer terms have not.
In studies of the genetic predisposition of refractive error, there is a correlation between environmental factors and the risk of developing myopia. Myopia has been observed in individuals with visually intensive occupations. Reading has also been found to be a predictor of myopia in children. It has been reported that children with myopia spent significantly more time reading than non-myopic children who spent more time playing outdoors. Socioeconomic status and higher levels of education have also been reported to be a risk factor for myopia.
Of these, cataract is responsible for >65%, or more than 22 million cases of blindness, and glaucoma is responsible for 6 million cases.
Cataracts: is the congenital and pediatric pathology that describes the greying or opacity of the crystalline lens, which is most commonly caused by intrauterine infections, metabolic disorders, and genetically transmitted syndromes. Cataracts are the leading cause of child and adult blindness that doubles in prevalence with every ten years after the age of 40. Consequently, today cataracts are more common among adults than in children. That is, people face higher chances of developing cataracts as they age. Nonetheless, cataracts tend to have a greater financial and emotional toll upon children as they must undergo expensive diagnosis, long term rehabilitation, and visual assistance. Also, according to the Saudi Journal for Health Sciences, sometimes patients experience irreversible amblyopia after pediatric cataract surgery because the cataracts prevented the normal maturation of vision prior to operation. Despite the great progress in treatment, cataracts remain a global problem in both economically developed and developing countries. At present, with the variant outcomes as well as the unequal access to cataract surgery, the best way to reduce the risk of developing cataracts is to avoid smoking and extensive exposure to sun light (i.e. UV-B rays).
The most common causes of visual impairment globally in 2010 were:
1. Refractive error (42%)
2. cataract (33%)
3. glaucoma (2%)
4. age related macular degeneration (1%)
5. corneal opacification (1%)
6. diabetic retinopathy (1%)
7. childhood blindness
8. trachoma (1%)
9. undetermined (18%)
The most common causes of blindness in 2010 were:
1. cataracts (51%)
2. glaucoma (8%)
3. age related macular degeneration (5%)
4. corneal opacification (4%)
5. childhood blindness (4%)
6. refractive errors (3%)
7. trachoma (3%)
8. diabetic retinopathy (1%)
9. undetermined (21%)
About 90% of people who are visually impaired live in the developing world. Age-related macular degeneration, glaucoma, and diabetic retinopathy are the leading causes of blindness in the developed world.
Among working age adults who are newly blind in England and Wales the most common causes in 2010 were:
1. Hereditary retinal disorders (20.2%)
2. Diabetic retinopathy (14.4%)
3. Optic atrophy (14.1%)
4. Glaucoma (5.9%)
5. Congenital abnormalities (5.1%)
6. Disorders of the visual cortex (4.1%)
7. Cerebrovascular disease (3.2%)
8. Degeneration of the macula and posterior pole (3.0%)
9. Myopia (2.8%)
10. Corneal disorders (2.6%)
11. Malignant neoplasms of the brain and nervous system (1.5%)
12. Retinal detachment (1.4%)
is a program launched by the International Agency for the Prevention of Blindness (IAPB) and is supported by the WHO in 1999 that has made controlling blindness in children a high priority.
Vitamin A supplementation plays an important role, specifically vitamin A deficiency is a top causes of preventable childhood blindness. Though in measles cases, the administration of the vitamin to offset visual impairment has not been proven effective, as of yet.
In Australia, the overall prevalence of myopia (worse than −0.50 diopters) has been estimated to be 17%. In one recent study, less than one in 10 (8%) Australian children between the ages of four and 12 were found to have myopia greater than −0.50 diopters. A recent review found 16% of Australians aged 40 or over have at least −1.00 diopters of myopia and 3% have at least −5.00 diopters.
The yearly cost of correcting refractive errors is estimated at 3.9 to 7.2 billion dollars in the United States.
The National Eye Institute reports keratoconus is the most common corneal dystrophy in the United States, affecting about one in 2,000 Americans, but some reports place the figure as high as one in 500. The inconsistency may be due to variations in diagnostic criteria, with some cases of severe astigmatism interpreted as those of keratoconus, and" vice versa". A long-term study found a mean incidence rate of 2.0 new cases per 100,000 population per year. Some studies have suggested a higher prevalence amongst females, or that people of South Asian ethnicity are 4.4 times as likely to suffer from keratoconus as Caucasians, and are also more likely to be affected with the condition earlier.
Keratoconus is normally bilateral (affecting both eyes) although the distortion is usually asymmetric and is rarely completely identical in both corneas. Unilateral cases tend to be uncommon, and may in fact be very rare if a very mild condition in the better eye is simply below the limit of clinical detection. It is common for keratoconus to be diagnosed first in one eye and not until later in the other. As the condition then progresses in both eyes, the vision in the earlier-diagnosed eye will often remain poorer than that in its fellow.
Global refractive errors have been estimated to affect 800 million to 2.3 billion. The incidence of myopia within sampled population often varies with age, country, sex, race, ethnicity, occupation, environment, and other factors. Variability in testing and data collection methods makes comparisons of prevalence and progression difficult.
The prevalence of myopia has been reported as high as 70–90% in some Asian countries, 30–40% in Europe and the United States, and 10–20% in Africa. Myopia is about twice as common in Jews than in people of non-Jewish ethnicity. Myopia is less common in African people and associated diaspora. In Americans between the ages of 12 and 54, myopia has been found to affect African Americans less than Caucasians.
Patients with keratoconus typically present initially with mild astigmatism and myopia, commonly at the onset of puberty, and are diagnosed by the late teenage years or early 20s. The disease can, however, present or progress at any age; in rare cases, keratoconus can present in children or not until later adulthood. A diagnosis of the disease at an early age may indicate a greater risk of severity in later life. Patients' vision will seem to fluctuate over a period of months, driving them to change lens prescriptions frequently, but as the condition worsens, contact lenses are required in the majority of cases. The course of the disorder can be quite variable, with some patients remaining stable for years or indefinitely, while others progress rapidly or experience occasional exacerbations over a long and otherwise steady course. Most commonly, keratoconus progresses for a period of 10 to 20 years before the course of the disease generally ceases in the third and fourth decades of life.
Scientists are studying different populations and relationships to try to learn more about the disease. They have found associations with different groups but it is not yet clear what the underlying factors are and how they affect different peoples around the world.
- Glaucoma patients. While PEX and glaucoma are believed to be related, there are cases of persons with PEX without glaucoma, and persons with glaucoma without PEX. Generally, a person with PEX is considered as having a risk of developing glaucoma, and vice versa. One study suggested that the PEX was present in 12% of glaucoma patients. Another found that PEX was present in 6% of an "open-angle glaucoma" group. Pseudoexfoliation syndrome is considered to be the most common of identifiable causes of glaucoma. If PEX is diagnosed without glaucoma, there is a high risk of a patient subsequently developing glaucoma.
- Country and region. Prevalence of PEX varies by geography. In Europe, differing levels of PEX were found; 5% in England, 6% in Norway, 4% in Germany, 1% in Greece, and 6% in France. One contrary report suggested that levels of PEX were higher among Greek people. One study of a county in Minnesota found that the prevalence of PEX was 25.9 cases per 100,000 people. It is reportedly high in northern European countries such as Norway, Sweden and Finland, as well as among the Sami people of northern Europe, and high among Arabic populations, but relatively rare among African Americans and Eskimos. In southern Africa, prevalence was found to be 19% of patients in a glaucoma clinic attending to persons of the Bantu tribes.
- Race. It varies considerably according to race.
- Gender. It affects women more than men. One report was that women were three times more likely than men to develop PEX.
- Age. Older persons are more likely to develop PEX. And persons younger than 50 are highly unlikely to have PEX. A study in Norway found that the prevalence of PEX of persons aged 50–59 was 0.4% while it was 7.9% for persons aged 80–89 years. If a person is going to develop PEX, the average age in which this will happen is between 69 and 75 years, according to the Norwegian study. A second corroborating report suggested that it happens primarily to people 70 and older. While older people are more likely to develop PEX, it is not seen as a "normal" part of aging.
- Other diseases. Sometimes PEX is associated with the development of medical problems other than merely glaucoma. There are conflicting reports about whether PEX is associated with problems of the heart or brain; one study suggested no correlations while other studies found statistical links with Alzheimer's disease, senile dementia, cerebral atrophy, chronic cerebral ischemia, stroke, transient ischemic attacks, heart disease, and hearing loss.
According to an American study nearly three in 10 children (28.4%) between the ages of five and 17 have astigmatism. A recent Brazilian study found that 34% of the students in one city were astigmatic. Regarding the prevalence in adults, a recent study in Bangladesh found that nearly 1 in 3 (32.4%) of those over the age of 30 had astigmatism.
A Polish study published in 2005 revealed "with-the-rule astigmatism" may lead to the onset of myopia.
A number of studies have found the prevalence of astigmatism increases with age.
The cause of pseudoexfoliation glaucoma is generally unknown.
PEX is generally believed to be a systemic disorder, possibly of the basement membrane of the eye. Researchers have noticed deposits of PEX material in various parts of the body, including in the skin, heart, lungs, liver, kidneys, and elsewhere. Nevertheless, what is puzzling is that PEX tends to happen in only one eye first, which scientists call "unilaterality", and in some cases, gradually afflicts the other eye, which is termed "bilaterality". According to this reasoning, if PEX were a systemic disorder, then both eyes should be affected at the same time, but they are not. There are contrasting reports about the extent and speed with which PEX moves from one eye to both eyes. According to one report, PEX develops in the second eye in 40% of cases. A contrasting report was that PEX can be found in both eyes in almost all situations if an electron microscope is used to examine the second eye, or if a biopsy of the conjunctiva was done, but that the extent of PEX is the second eye was much less than the first one. A different report suggested that two thirds of PEX patients had flakes in only one eye. In one long term study, patients with PEX in only one eye were studied, and it was found that over time, 13% progressed to having both eyes afflicted by PEX. Scientists believe that elevated levels of plasma homocysteine are a risk factor for cardiovascular disease, and two studies have found higher levels of plasma homocysteine in PEX patients, or elevated homocysteine concentrations in tear fluids produced by the eye.
There is speculation that PEX may be caused by oxidative damage and the presence of "free radicals", although the exact nature of how this might happen is still under study. Studies of PEX patients have found a decrease in the concentrations of ascorbic acid, increase in concentrations of malondialdehyde, and an increase in concentrations of 8-iso-prostaglandinF2a.
There is speculation that genetics may play a role in PEX. A predisposition to develop PEX later in life may be an inherited characteristic, according to one account. One report suggested the genetic component was "strong". One study performed in Iceland and Sweden has associated PEX with polymorphisms in gene LOXL1. A report suggested that a specific gene named LOXL1 which was a member of the family of enzymes which play a role in the linking of collagen and elastin inside cells. LOXL1 was responsible for "all the heritability" of PEX, according to one source. Two distinct mutations in which a single nucleotide was changed, or called a "single nucleotide polymorphism" or SNP, was discovered in Scandinavian populations and confirmed in other populations, and may be involved with the onset of PEX.
Researchers are investigating whether factors such as exposure to ultraviolet light, living in northern latitudes, or altitude influence the onset of PEX. One report suggested that climate was not a factor related to PEX. Another report suggested a possible link to sunlight as well as a possible autoimmune response, or possibly a virus.
The incidence and prevalence of PMD are unknown, and no studies have yet investigated its prevalence or incidence. However, it is generally agreed that PMD is a very rare condition. Some uncertainty regarding the incidence of PMD may be attributed to its confusion with keratoconus. PMD is not linked to race or age, although most cases present early in life, between 20 and 40 years of age. While PMD is usually considered to affect men and women equally, some studies suggest that it may affect men more frequently.
Several diseases have been observed in patients with PMD. However, no causal relationships have been established between any of the associated diseases and the pathogenesis of PMD. Such diseases include: chronic open-angle glaucoma, retinitis pigmentosa, retinal lattice degeneration, scleroderma, kerato-conjunctivitis, eczema, and hyperthyroidism.
Less common causes of vitreous hemorrhage make up 6.4–18% of cases, and include:
- Proliferative sickle cell retinopathy
- Macroaneurysm
- Age-related macular degeneration
- Terson syndrome
- Retinal neovascularization as a result of branch or central retinal vein occlusion
- Other – about 7 cases in 100,000 have no known cause attributed to them.
There are many causes of blurred vision:
- Use of atropine or other anticholinergics
- Presbyopia—Difficulty focusing on objects that are close. Common in the elderly. (Accommodation tends to decrease with age.)
- Cataracts—Cloudiness over the eye's lens, causing poor night-time vision, halos around lights, and sensitivity to glare. Daytime vision is eventually affected. Common in the elderly.
- Glaucoma—Increased pressure in the eye, causing poor night vision, blind spots, and loss of vision to either side. A major cause of blindness. Glaucoma can happen gradually or suddenly—if sudden, it is a medical emergency.
- Diabetes—Poorly controlled blood sugar can lead to temporary swelling of the lens of the eye, resulting in blurred vision. While it resolves if blood sugar control is reestablished, it is believed repeated occurrences promote the formation of cataracts (which are not temporary).
- Diabetic retinopathy—This complication of diabetes can lead to bleeding into the retina. Another common cause of blindness.
- Hypervitaminosis A—Excess consumption of vitamin A can cause blurred vision.
- Macular degeneration—Loss of central vision, blurred vision (especially while reading), distorted vision (like seeing wavy lines), and colors appearing faded. The most common cause of blindness in people over age 60.
- Eye infection, inflammation, or injury.
- Sjögren's syndrome, a chronic autoimmune inflammatory disease that destroys moisture producing glands, including lacrimal (tear)
- Floaters—Tiny particles drifting across the eye. Although often brief and harmless, they may be a sign of retinal detachment.
- Retinal detachment—Symptoms include floaters, flashes of light across your visual field, or a sensation of a shade or curtain hanging on one side of your visual field.
- Optic neuritis—Inflammation of the optic nerve from infection or multiple sclerosis. You may have pain when you move your eye or touch it through the eyelid.
- Stroke or transient ischemic attack
- Brain tumor
- Toxocara—A parasitic roundworm that can cause blurred vision
- Bleeding into the eye
- Temporal arteritis—Inflammation of an artery in the brain that supplies blood to the optic nerve.
- Migraine headaches—Spots of light, halos, or zigzag patterns are common symptoms prior to the start of the headache. A retinal migraine is when you have only visual symptoms without a headache.
- Myopia—Blurred vision may be a systemic sign of local anaesthetic toxicity
- Reduced blinking—Lid closure that occurs too infrequently often leads to irregularities of the tear film due to prolonged evaporation, thus resulting in disruptions in visual perception.
- Carbon monoxide poisoning—Reduced oxygen delivery can effect many areas of the body including vision. Other symptoms caused by CO include vertigo, hallucination and sensitivity to light.
In the United States, the incidence of primary congenital glaucoma is about one in 10,000 live births. Worldwide, the incidence ranges from a low of 1:22,000 in Northern Ireland to a high of 1:2,500 in Saudi Arabia and 1:1,250 in Romania. In about two-thirds of cases, it is bilateral. The distribution between males and females varies with geography. In North America and Europe it is more common in boys, whereas in Japan it is more common in girls.
- Congenital glaucoma
- Incidence: one in every 10000-15000 live births.
- Bilateral in up to 80% of cases.
- Most cases are sporadic (90%). However, in the remaining 10% there appears to be a strong familial component.
As one gets older, pockets of fluid can develop in the vitreous. When these pockets develop near the back of the eye, the vitreous can pull away from the retina and possibly tear it. Posterior vitreous detachment accounts for 3.7–11.7% of vitreous hemorrhage cases.
CNV causes may be congenital in nature, such as with Aniridia, or acquired. Frequently, inflammatory, infectious, degenerative, traumatic and iatrogenic (from contact lenses) diseases are responsible for acquired CNV.
Some major associated, acquired inflammatory conditions include graft rejection following keratoplasty, graft or host diseases of the new tissue, atopic conjunctivitis, rosacea, ocular pemphigoid, Lyell's syndrome, and Steven's Johnson syndrome.
Infections responsible for CNV range from bacterial (chlamydia, syphilis, pseduomonas), Viral (herpes simplex and herpes zoster viruses), Fungal (candida, asperigillus, fusarium), and parasistic (onchocerca volvolus).
Degenerative diseases such as pterygiums, and terrien's marginal degeneration may be responsible.
Traumas frequently seen with CNV include ulceration, alkali burns, and stem cell deficiency.
One of the most common causes of corneal neovascularization is iastrogenic pathology from contact lens wear. This is especially true of lenses made with older hydrogel materials such as HEMA (2-hydroxyethyl methacrylate) for both daily and extended wear. Such older hydrogel materials have a relatively low oxygen transmissibility so the cornea becomes starved of oxygen leading to the ingress of blood capillaries into the clear cornea to satisfy that oxygen demand. Older estimates have 128,000 to 470,000 cases of lens-induced CNV each year, but this may be decreasing due to the increasing popularity of daily disposable lenses.
The risk for CNV is elevated in certain instances for patients following penetrating keratoplasty without active inflammation or epithelial defects. CNV is more likely to occur in those with active blepharitis, those who receive sutured knots in their host stromas, and those with a large recipient area.
Causes of photophobia relating directly to the eye itself include:
- Achromatopsia
- Aniridia
- Anticholinergic drugs may cause photophobia by paralyzing the iris sphincter muscle.
- Aphakia (absence of the lens of the eye)
- Blepharitis
- Buphthalmos (abnormally narrow angle between the cornea and iris)
- Cataracts
- Coloboma
- Cone dystrophy
- Congenital abnormalities of the eye
- Viral conjunctivitis ("pink eye")
- Corneal abrasion
- Corneal dystrophy
- Corneal ulcer
- Disruption of the corneal epithelium, such as that caused by a corneal foreign body or keratitis
- Ectopia lentis
- Endophthalmitis
- Eye trauma caused by disease, injury, or infection such as chalazion, episcleritis, glaucoma, keratoconus, or optic nerve hypoplasia
- Hydrophthalmos, or congenital glaucoma
- Iritis
- The drug isotretinoin (Accutane/Roaccutane) has been associated with photophobia
- Optic neuritis
- Pigment dispersion syndrome
- Pupillary dilation (naturally or chemically induced)
- Retinal detachment
- Scarring of the cornea or sclera
- Uveitis
Ocular hypertension is the presence of elevated fluid pressure inside the eye (intraocular pressure), usually with no optic nerve damage or visual field loss.
For most individuals, the normal range of introcular pressure is between 10 mmHg and 21 mmHg. Elevated intraocular pressure is an important risk factor for glaucoma. The Ocular Hypertension Treatment Study, a large, multicentered, randomized clinical trial, determined that topical ocular hypotensive medication delays or prevents the onset of Primary Open-Angle Glaucoma. Accordingly, most individuals with consistently elevated intraocular pressures of greater than 21mmHg, particularly if they have other risk factors, are treated in an effort to prevent vision loss from glaucoma.