Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There are several potential challenges associated with routine screening for HCM in the United States. First, the U.S. athlete population of 15 million is almost twice as large as Italy's estimated athlete population. Second, these events are rare, with fewer than 100 deaths in the U.S. due to HCM in competitive athletes per year, or about 1 death per 220,000 athletes. Lastly, genetic testing would provide a definitive diagnosis; however, due to the numerous HCM-causing mutations, this method of screening is complex and is not cost-effective. Therefore, genetic testing in the United States is limited to individuals who exhibit clear symptoms of HCM, and their family members. This ensures that the test is not wasted on detecting other causes of ventricular hypertrophy (due to its low sensitivity), and that family members of the individual are educated on the potential risk of being carriers of the mutant gene(s).
Canadian genetic testing guidelines and recommendations for individuals diagnosed with HCM are as follows:
- The main purpose of genetic testing is for screening family members.
- According to the results, at-risk relatives may be encouraged to undergo extensive testing.
- Genetic testing is not meant for confirming a diagnosis.
- If the diagnosed individual has no relatives that are at risk, then genetic testing is not required.
- Genetic testing is not intended for risk assessment or treatment decisions.
- Evidence only supports clinical testing in predicting the progression and risk of developing complications of HCM.
For individuals "suspected" of having HCM:
- Genetic testing is not recommended for determining other causes of left ventricular hypertrophy (such as "athlete's heart", hypertension, and cardiac amyloidosis).
- HCM may be differentiated from other hypertrophy-causing conditions using clinical history and clinical testing.
Due to non-compaction cardiomyopathy being a relatively new disease, its impact on human life expectancy is not very well understood. In a 2005 study that documented the long-term follow-up of 34 patients with NCC, 35% had died at the age of 42 +/- 40 months, with a further 12% having to undergo a heart transplant due to heart failure. However, this study was based upon symptomatic patients referred to a tertiary-care center, and so were suffering from more severe forms of NCC than might be found typically in the population. Sedaghat-Hamedani et al. also showed the clinical course of symptomatic LVNC can be severe. In this study cardiovascular events were significantly more frequent in LVNC patients compared with an age-matched group of patients with non-ischaemic dilated cardiomyopathy (DCM). As NCC is a genetic disease, immediate family members are being tested as a precaution, which is turning up more supposedly healthy people with NCC who are asymptomatic. The long-term prognosis for these people is currently unknown.
Although the disease is more common in African-Americans than in Caucasians, it may occur in any patient population.
Therapies that support reverse remodeling have been investigated, and this may suggests a new approach to the prognosis of cardiomyopathies (see ventricular remodeling).
The prevalence of ARVD is about 1/10,000 in the general population in the United States, although some studies have suggested that it may be as common as 1/1,000. Recently, 1/200 were found to be carriers of mutations that predispose to ARVC. Based on these findings and other evidence, it is thought that in most patients, additional factors such as other genes, athletic lifestyle, exposure to certain viruses, etc. may be required for a patient to eventually develop signs and symptoms of ARVC. It accounts for up to 17% of all sudden cardiac deaths in the young. In Italy, the prevalence is 40/10,000, making it the most common cause of sudden cardiac death in the young population.
Due to its recent establishment as a diagnosis, and it being unclassified as a cardiomyopathy according to the WHO, it is not fully understood how common the condition is. Some reports suggest that it is in the order of 0.12 cases per 100,000. The low number of reported cases though is due to the lack of any large population studies into the disease and have been based primarily upon patients suffering from advanced heart failure. A similar situation occurred with hypertrophic cardiomyopathy, which was initially considered very rare; however is now thought to occur in one in every 500 people in the population.
Again due to this condition being established as a diagnosis recently, there are ongoing discussions as to its nature, and to various points such as the ratio of compacted to non-compacted at different age stages. However it is universally understood that non-compaction cardiomyopathy will be characterized anatomically by "deep trabeculations in the ventricular wall, which define recesses communicating with the main ventricular chamber. Major clinical correlates include systolic and diastolic dysfunction, associated at times with systemic embolic events."
The progression of HFpEF and its clinical course is poorly understood in comparison to HFrEF. Despite this, patients with HFrEF and HFpEF appear to have comparable outcomes in terms of hospitalization and mortality. Causes of death in patients vary substantially. However, among patients in more advanced heart failure (NYHA classes II-IV), cardiovascular death, including heart attacks and sudden cardiac death, was the predominant cause in population-based studies.
It is estimated that the incidence of PPCM in the United States is between 1 in 1300 to 4000 live births. While it can affect women of all races, it is more prevalent in some countries; for example, estimates suggest that PPCM occurs at rates of one in 1000 live births in South African Bantus, and as high as one in 300 in Haiti.
Some studies assert that PPCM may be slightly more prevalent among older women who have had higher numbers of liveborn children and among women of older and younger extremes of childbearing age. However, a quarter to a third of PPCM patients are young women who have given birth for the first time.
While the use of tocolytic agents or the development of preeclampsia (toxemia of pregnancy) and pregnancy-induced hypertension (PIH) may contribute to the worsening of heart failure, they do not cause PPCM; the majority of women have developed PPCM who neither received tocolytics nor had preeclampsia nor PIH.
In short, PPCM can occur in any woman of any racial background, at any age during reproductive years, and in any pregnancy.
The true incidence of TIC is unclear. Some studies have noted the incidence of TIC in adults with irregular heart rhythms to range from 8% to 34%. Other studies of patients with atrial fibrillation and left ventricular dysfunction estimate that 25-50% of these study participants have some degree of TIC. TIC has been reported in all age groups.
Takotsubo cardiomyopathy is rare, affecting between 1.2% and 2.2% of people in Japan and 2% to 3% in western countries who suffer a myocardial infarction. It also affects far more women than men with 90% of cases being women, most postmenopausal. Scientists believe one reason is that estrogen causes the release of catecholamine and glucocorticoid in response to mental stress. It is not likely for the same recovered patient to experience the syndrome twice, although it has happened in rare cases. The average ages at onset are between 58 and 75 years. Less than 3% of cases occurred in patients under age 50.
Boxer cardiomyopathy is a genetic disease inherited in an autosomal dominant pattern. The presentation in affected offspring is quite variable, suggesting incomplete penetrance. In 2009, a group led by Dr. Kathryn Meurs at Washington State University announced that they had identified one genetic anomaly associated with Boxer cardiomyopathy but as of 2012 there is still debate over the significance of the discovery.
Despite the grave initial presentation in some of the patients, most of the patients survive the initial acute event, with a very low rate of in-hospital mortality or complications. Once a patient has recovered from the acute stage of the syndrome, they can expect a favorable outcome and the long-term prognosis is excellent. Even when ventricular systolic function is heavily compromised at presentation, it typically improves within the first few days and normalises within the first few months. Although infrequent, recurrence of the syndrome has been reported and seems to be associated with the nature of the trigger.
Clinical manifestations of HFpEF are similar to those observed in HFrEF and include shortness of breath including exercise induced dyspnea, paroxysmal nocturnal dyspnea and orthopnea, exercise intolerance, fatigue, elevated jugular venous pressure, and edema.
Patients with HFpEF poorly tolerate stress, particularly hemodynamic alterations of ventricular loading or increased diastolic pressures. Often there is a more dramatic elevation in systolic blood pressure in HFpEF than is typical of HFrEF.
Athlete's heart is not dangerous for athletes (though if a nonathlete has symptoms of bradycardia, cardiomegaly, and cardiac hypertrophy, another illness may be present). Athlete's heart is not the cause of sudden cardiac death during or shortly after a workout, which mainly occurs due to hypertrophic cardiomyopathy, a genetic disorder.
No treatment is required for people with athletic heart syndrome; it does not pose any physical threats to the athlete, and despite some theoretical concerns that the ventricular remodeling might conceivably predispose for serious arrhythmias, no evidence has been found of any increased risk of long-term events. Athletes should see a physician and receive a clearance to be sure their symptoms are due to athlete’s heart and not another heart disease, such as cardiomyopathy. If the athlete is uncomfortable with having athlete's heart or if a differential diagnosis is difficult, deconditioning from exercise for a period of three months allows the heart to return to its regular size. However, one long-term study of elite-trained athletes found that dilation of the left ventricle was only partially reversible after a long period of deconditioning. This deconditioning is often met with resistance to the accompanying lifestyle changes. The real risk attached to athlete's heart is if athletes or nonathletes simply assume they have the condition, instead of making sure they do not have a life-threatening heart illness.
The goal of management of ARVD is to decrease the incidence of sudden cardiac death. This raises a clinical dilemma: How to prophylactically treat the asymptomatic patient who was diagnosed during family screening.
A certain subgroup of individuals with ARVD are considered at high risk for sudden cardiac death. Associated characteristics include:
- Young age
- Competitive sports activity
- Malignant familial history
- Extensive RV disease with decreased right ventricular ejection fraction.
- Left ventricular involvement
- Syncope
- Episode of ventricular arrhythmia
Management options include pharmacological, surgical, catheter ablation, and placement of an implantable cardioverter-defibrillator.
Prior to the decision of the treatment option, programmed electrical stimulation in the electrophysiology laboratory may be performed for additional prognostic information. Goals of programmed stimulation include:
- Assessment of the disease's arrhythmogenic potential
- Evaluate the hemodynamic consequences of sustained VT
- Determine whether the VT can be interrupted via antitachycardia pacing.
Regardless of the management option chosen, the individual is typically advised to undergo lifestyle modification, including avoidance of strenuous exercise, cardiac stimulants (i.e.: caffeine, nicotine, pseudoephedrine) and alcohol. If the individual wishes to begin an exercise regimen, an exercise stress test may have added benefit.
While ventricular hypertrophy occurs naturally as a reaction to aerobic exercise and strength training, it is most frequently referred to as a pathological reaction to cardiovascular disease, or high blood pressure. It is one aspect of ventricular remodeling.
While LVH itself is not a disease, it is usually a marker for disease involving the heart. Disease processes that can cause LVH include any disease that increases the afterload that the heart has to contract against, and some primary diseases of the muscle of the heart.
Causes of increased afterload that can cause LVH include aortic stenosis, aortic insufficiency and hypertension. Primary disease of the muscle of the heart that cause LVH are known as hypertrophic cardiomyopathies, which can lead into heart failure.
Long-standing mitral insufficiency also leads to LVH as a compensatory mechanism.
Associated genes include OGN, osteoglycin.
HIV is a major cause of cardiomyopathy – in particular dilated cardiomyopathy. Dilated cardiomyopathy can be due to pericardial effusion or infective endocarditis, especially in intravenous drug users which are common in the HIV population. However, the most researched causes of cardiomyopathy are myocardial inflammation and infection caused by HIV-1. Toxoplasma gondii is the most common opportunistic infectious agent associated with myocarditis in AIDS. Coinfection with viruses (usually, coxsackievirus B3 and cytomegalovirus) seems to have an important affect in myocarditis. HIV-1 infection produces additional virus and cytokines such as TNF-α. This induces cardiomyocyte apoptosis. TNF-α causes a negative inotropic effect by interfering with the intracellular calcium ion concentrations. The intensity of the stains for TNF-α and iNOS of the myocardium was greater in patients with HIV associated cardiomyopathy, myocardial viral infection and was inversely correlated with CD4 count with antiretroviral therapy having no effect. Cardiac autoimmunity affects the pathogenesis of HIV-related heart disease as HIV-infected patients with dilated cardiomyopathy are more likely to have cardiac-specific autoantibodies than HIV-infected patients with healthy hearts and HIV-negative controls. Many patients with HIV have nutritional deficiencies which have been linked to left ventricular dysfunction. HIV-infected patients with encephalopathy are more likely to die of congestive heart failure than are those without encephalopathy. HAART has reduced the incidence of myocarditis thus reducing the prevalence of HIV-associated cardiomyopathy. Intravenous immunoglobulins (IVIGs) can also help patients with HIV-associated myocarditis.
Hypertension or high blood pressure affects at least 4 billion people worldwide. Hypertensive heart disease is only one of several diseases attributable to high blood pressure. Other diseases caused by high blood pressure include ischemic heart disease, stroke, peripheral arterial disease, aneurysms and kidney disease. Hypertension increases the risk of heart failure by two or three-fold and probably accounts for about 25% of all cases of heart failure. In addition, hypertension precedes heart failure in 90% of cases, and the majority of heart failure in the elderly may be attributable to hypertension. Hypertensive heart disease was estimated to be responsible for 1.0 million deaths worldwide in 2004 (or approximately 1.7% of all deaths globally), and was ranked 13th in the leading global causes of death for all ages. A world map shows the estimated disability-adjusted life years per 100,000 inhabitants lost due to hypertensive heart disease in 2004.
Any condition or process that leads to stiffening of the left ventricle can lead to diastolic dysfunction. Causes of left ventricular stiffening include:
- A long-standing hypertension where, as a result of left ventricular muscle hypertrophy caused by the high pressure, the left ventricle has become stiff.
- Aortic stenosis of any cause where the ventricular muscle becomes hypertrophied, and thence stiff, as a result of the increased pressure load placed on it by the stenosis.
- Diabetes
- Age – elderly patients mainly if they have hypertension.
Causes of isolated right ventricular diastolic failure are uncommon. These causes include:
- Constrictive pericarditis
- Restrictive cardiomyopathy, which includes Amyloidosis (most common restrictive), Sarcoidosis and fibrosis.
Boxer cardiomyopathy shares striking similarities to a human myocardial disease called arrhythmogenic right ventricular cardiomyopathy (ARVC). On histopathology, the disease is characterized by the progressive replacement of ventricular myocardium (primarily right ventricular myocardium) with fatty or fibro-fatty tissue. Clinically, the disease is characterized by the development of ventricular tachyarrhythmias, including ventricular tachycardia and ventricular fibrillation. Affected dogs are at risk of syncope and sudden cardiac death.
The prognosis of tricuspid insufficiency is less favorable for males than females. Furthermore, increased tricuspid insufficiency (regurgitation) severity is an indication of a poorer prognosis according to Nath, et al. It is also important to note that since tricuspid insufficiency most often arises from left heart failure or pulmonary hypertension, the person's prognosis is usually dictated by the prognosis of the latter conditions and not by the tricuspid insufficiency "per se".
Atrial fibrillation increases the risk of heart failure by 11 per 1000, kidney problems by 6 per 1000, death by 4 per 1000, stroke by 3 per 1000, and coronary heart disease by 1 per 1000. Women have a worse outcome overall than men. Evidence increasingly suggests that atrial fibrillation is independently associated with a higher risk of developing dementia.
Ventricular hypertrophy (VH) is thickening of the walls of a ventricle (lower chamber) of the heart. Although left ventricular hypertrophy (LVH) is more common, right ventricular hypertrophy (RVH), as well as concurrent hypertrophy of both ventricles can also occur.
Ventricular hypertrophy can result from a variety of conditions, both adaptive and maladaptive. For example, it occurs in what is regarded as a physiologic, adaptive process in pregnancy in response to increased blood volume; but can also occur as a consequence of ventricular remodeling following a heart attack. Importantly, pathologic and physiologic remodeling engage different cellular pathways in the heart and result in different gross cardiac phenotypes.
Until recently, it was generally assumed that the prognosis for individuals with diastolic dysfunction and associated intermittent pulmonary edema was better than those with systolic dysfunction. In fact, in two studies appearing in the New England Journal of Medicine in 2006, evidence was presented to suggest that the prognosis in diastolic dysfunction is the same as that in systolic dysfunction.