Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
OP pesticide exposure occurs through inhalation, ingestion and dermal contact. Because OP pesticides disintegrate quickly in air and light, they have been considered relatively safe to consumers. However, OP residues linger on fruits and vegetables. Certain OP pesticides have been banned for use on some crops, for example methyl parathion is banned from use on some crops while permitted on others.
The Environmental Working Group has developed lists for concerned consumers, identifying crops with the highest pesticide residue quantities and the lowest. The "Dirty Dozen" crops are updated yearly and in 2012 included apples, celery, sweet bell peppers, peaches, strawberries, imported nectarines, grapes, spinach, lettuce, cucumbers, domestic blueberries and potatoes. Forty-five fruits and vegetables are listed by the Environmental Working Group as being regularly found with pesticide residue associated with OPs.
The International Agency for Research on Cancer (IARC), found that organophosphates may possibly increased cancer risk. Tetrachlorvinphos and parathion were classified as "possibly carcinogenic", malathion, and diazinon.
Since lead has been used widely for centuries, the effects of exposure are worldwide. Environmental lead is ubiquitous, and everyone has some measurable blood lead level. Atmospheric lead pollution increased dramatically beginning in the 1950s as a result of the widespread use of leaded gasoline. Lead is one of the largest environmental medicine problems in terms of numbers of people exposed and the public health toll it takes. Lead exposure accounts for about 0.2% of all deaths and 0.6% of disability adjusted life years globally.
Although regulation reducing lead in products has greatly reduced exposure in the developed world since the 1970s, lead is still allowed in products in many developing countries. In all countries that have banned leaded gasoline, average blood lead levels have fallen sharply. However, some developing countries still allow leaded gasoline, which is the primary source of lead exposure in most developing countries. Beyond exposure from gasoline, the frequent use of pesticides in developing countries adds a risk of lead exposure and subsequent poisoning. Poor children in developing countries are at especially high risk for lead poisoning. Of North American children, 7% have blood lead levels above 10 μg/dL, whereas among Central and South American children, the percentage is 33 to 34%. About one fifth of the world's disease burden from lead poisoning occurs in the Western Pacific, and another fifth is in Southeast Asia.
In developed countries, people with low levels of education living in poorer areas are most at risk for elevated lead. In the US, the groups most at risk for lead exposure are the impoverished, city-dwellers, and immigrants. African-American children and those living in old housing have also been found to be at elevated risk for high blood lead levels in the US. Low-income people often live in old housing with lead paint, which may begin to peel, exposing residents to high levels of lead-containing dust.
Risk factors for elevated lead exposure include alcohol consumption and smoking (possibly because of contamination of tobacco leaves with lead-containing pesticides). Adults with certain risk factors might be more susceptible to toxicity; these include calcium and iron deficiencies, old age, disease of organs targeted by lead (e.g. the brain, the kidneys), and possibly genetic susceptibility.
Differences in vulnerability to lead-induced neurological damage between males and females have also been found, but some studies have found males to be at greater risk, while others have found females to be.
In adults, blood lead levels steadily increase with increasing age. In adults of all ages, men have higher blood lead levels than women do. Children are more sensitive to elevated blood lead levels than adults are. Children may also have a higher intake of lead than adults; they breathe faster and may be more likely to have contact with and ingest soil. Children of ages one to three tend to have the highest blood lead levels, possibly because at that age they begin to walk and explore their environment, and they use their mouths in their exploration. Blood levels usually peak at about 18–24 months old. In many countries including the US, household paint and dust are the major route of exposure in children.
Outcome is related to the extent and duration of lead exposure. Effects of lead on the physiology of the kidneys and blood are generally reversible; its effects on the central nervous system are not. While peripheral effects in adults often go away when lead exposure ceases, evidence suggests that most of lead's effects on a child's central nervous system are irreversible. Children with lead poisoning may thus have adverse health, cognitive, and behavioral effects that follow them into adulthood.
When thinking of pesticide poisoning, one does not take into consideration the contribution that is made of their own household. The majority of households in Canada use pesticides while taking part in activities such as gardening. In Canada 96 percent of households report having a lawn or a garden. 56 percent of the households who have a lawn or a garden utilize fertilizer or pesticide. This form of pesticide use may contribute to the third type of poisoning, which is caused by long-term low-level exposure. As mentioned before, long-term low-level exposure affects individuals from sources such as pesticide residues in food as well as contact with pesticide residues in the air, water, soil, sediment, food materials, plants and animals.
It is difficult to differentiate the effects of low level metal poisoning from the environment with other kinds of environmental harms, including nonmetal pollution. Generally, increased exposure to heavy metals in the environment increases risk of developing cancer.
Without a diagnosis of metal toxicity and outside of evidence-based medicine, but perhaps because of worry about metal toxicity, some people seek chelation therapy to treat autism, cardiovascular disease, Alzheimer's disease, or any sort of neurodegeneration. Chelation therapy does not improve outcomes for those diseases.
Some of the toxic effects of mercury are partially or wholly reversible, either through specific therapy or through natural elimination of the metal after exposure has been discontinued. Autopsy findings point to a half-life of inorganic mercury in human brains of 27.4 years. Heavy or prolonged exposure can do irreversible damage, in particular in fetuses, infants, and young children. Young's syndrome is believed to be a long-term consequence of early childhood mercury poisoning.
Mercuric chloride may cause cancer as it has caused increases in several types of tumors in rats and mice, while methyl mercury has caused kidney tumors in male rats. The EPA has classified mercuric chloride and methyl mercury as possible human carcinogens (ATSDR, EPA)
Pesticide poisoning is an important occupational health issue because pesticides are used in a large number of industries, which puts many different categories of workers at risk. Extensive use puts agricultural workers in particular at increased risk for pesticide illnesses. Exposure can occur through inhalation of pesticide fumes, and often occurs in settings including greenhouse spraying operations and other closed environments like tractor cabs or while operating rotary fan mist sprayers in facilities or locations with poor ventilation systems.
Workers in other industries are at risk for exposure as well. For example, commercial availability of pesticides in stores puts retail workers at risk for exposure and illness when they handle pesticide products. The ubiquity of pesticides puts emergency responders such as fire-fighters and police officers at risk, because they are often the first responders to emergency events and may be unaware of the presence of a poisoning hazard. The process of aircraft disinsection, in which pesticides are used on inbound international flights for insect and disease control, can also make flight attendants sick.
Different job functions can lead to different levels of exposure. Most occupational exposures are caused by absorption through exposed skin such as the face, hands, forearms, neck, and chest. This exposure is sometimes enhanced by inhalation in settings including spraying operations in greenhouses and other closed environments, tractor cabs, and the operation of rotary fan mist sprayers.
Chronic arsenic poisoning results from drinking contaminated well water over a long period of time. Many aquifers contain high concentration of arsenic salts. The World Health Organization (WHO) recommends a limit of 0.01 mg/L (10 parts per billion) of arsenic in drinking water. This recommendation was established based on the limit of detection for most laboratories' testing equipment at the time of publication of the WHO water quality guidelines. More recent findings show that consumption of water with levels as low as 0.00017 mg/L (0.17 parts per billion) over long periods of time can lead to arsenicosis.
From a 1988 study in China, the US protection agency quantified the lifetime exposure of arsenic in drinking water at concentrations of 0.0017 mg/L, 0.00017 mg/L, and 0.000017 mg/L are associated with a lifetime skin cancer risk of 1 in 10,000, 1 in 100,000, and 1 in 1,000,000 respectively. WHO asserts that a level of 0.01 mg/L poses a risk of 6 in 10000 chance of lifetime skin cancer risk and contends that this level of risk is acceptable.
One of the worst incidents of arsenic poisoning via well water occurred in Bangladesh, which the World Health Organization called the "largest mass poisoning of a population in history."
Mining techniques such as hydraulic fracturing may mobilize arsenic in groundwater and aquifers due to enhanced methane transport and resulting changes in redox conditions, and inject fluid containing additional arsenic.
Even though zinc is an essential requirement for a healthy body, excess zinc can be harmful, and cause zinc toxicity. Such toxicity levels have been seen to occur at ingestion of greater than 225 mg of Zinc. Excessive absorption of zinc can suppress copper and iron absorption. The free zinc ion in solution is highly toxic to bacteria, plants, invertebrates, and even vertebrate fish.
A number of factors can potentially increase the risk of developing paracetamol toxicity. Chronic excessive alcohol consumption can induce CYP2E1, thus increasing the potential toxicity of paracetamol. In one study of patients with liver injury, 64% reported alcohol intakes of greater than 80 grams a day, while 35% took 60 grams a day or less. Whether chronic alcoholism should be considered a risk factor has been debated by some clinical toxicologists. For chronic alcohol users, acute alcohol ingestion at the time of a paracetamol overdose may have a protective effect. For non-chronic alcohol users, acute alcohol consumption had no protective effect.
Fasting is a risk factor, possibly because of depletion of liver glutathione reserves. The concomitant use of the CYP2E1 inhibitor isoniazid increases the risk of hepatotoxicity, though whether 2E1 induction is related to the hepatotoxicity in this case is unclear. Concomitant use of other drugs that induce CYP enzymes, such as antiepileptics including carbamazepine, phenytoin, and barbiturates, have also been reported as risk factors.
Methylmercury is the major source of organic mercury for all individuals. Due to bioaccumulation it works its way up through the food web and thus biomagnifies, resulting in high concentrations among populations of some species. Top predatory fish, such as tuna or swordfish, are usually of greater concern than smaller species. The US FDA and the EPA advise women of child-bearing age, nursing mothers, and young children to completely avoid swordfish, shark, king mackerel and tilefish from the Gulf of Mexico, and to limit consumption of albacore ("white") tuna to no more than per week, and of all other fish and shellfish to no more than per week. A 2006 review of the risks and benefits of fish consumption found, for adults, the benefits of one to two servings of fish per week outweigh the risks, even (except for a few fish species) for women of childbearing age, and that avoidance of fish consumption could result in significant excess coronary heart disease deaths and suboptimal neural development in children.
The period between exposure to methylmercury and the appearance of symptoms in adult poisoning cases is long. The longest recorded latent period is five months after a single exposure, in the Dartmouth case (see History); other latent periods in the range of weeks to months have also been reported. No explanation for this long latent period is known. When the first symptom appears, typically paresthesia (a tingling or numbness in the skin), it is followed rapidly by more severe effects, sometimes ending in coma and death. The toxic damage appears to be determined by the peak value of mercury, not the length of the exposure.
Methylmercury exposure during rodent gestation, a developmental period that approximately models human neural development during the first two trimesters of gestation, has long-lasting behavioral consequences that appear in adulthood and, in some cases, may not appear until aging. Prefrontal cortex or dopamine neurotransmission could be especially sensitive to even subtle gestational methylmercury exposure and suggests that public health assessments of methylmercury based on intellectual performance may underestimate the impact of methylmercury in public health.
Ethylmercury is a breakdown product of the antibacteriological agent ethylmercurithiosalicylate, which has been used as a topical antiseptic and a vaccine preservative (further discussed under Thiomersal below). Its characteristics have not been studied as extensively as those of methylmercury. It is cleared from the blood much more rapidly, with a half-life of seven to 10 days, and it is metabolized much more quickly than methylmercury. It is presumed not to have methylmercury's ability to cross the blood–brain barrier via a transporter, but instead relies on simple diffusion to enter the brain. Other exposure sources of organic mercury include phenylmercuric acetate and phenylmercuric nitrate. These compounds were used in indoor latex paints for their antimildew properties, but were removed in 1990 because of cases of toxicity.
Organic arsenic is less harmful than inorganic arsenic. Seafood is a common source of the less toxic organic arsenic in the form of arsenobetaine. The arsenic reported in 2012 in fruit juice and rice by "Consumer Reports" was primarily inorganic arsenic.
The toxic dose of paracetamol is highly variable. In general the recommended maximum daily dose for healthy adults is 4 grams. Higher doses lead to increasing risk of toxicity. In adults, single doses above 10 grams or 200 mg/kg of bodyweight, whichever is lower, have a reasonable likelihood of causing toxicity. Toxicity can also occur when multiple smaller doses within 24 hours exceed these levels. Following a normal dose of 1 gram of paracetamol four times a day for two weeks, patients can expect an increase in alanine transaminase in their liver to typically about three times the normal value. It is unlikely that this dose would lead to liver failure. Studies have shown significant hepatotoxicity is uncommon in patients who have taken greater than normal doses over 3 to 4 days. In adults, a dose of 6 grams a day over the preceding 48 hours could potentially lead to toxicity, while in children acute doses above 200 mg/kg could potentially cause toxicity. Acute paracetamol overdose in children rarely causes illness or death, and it is very uncommon for children to have levels that require treatment, with chronic larger-than-normal doses being the major cause of toxicity in children.
Intentional overdosing (self-poisoning, with suicidal intent) is frequently implicated in paracetamol toxicity. In a 2006 review, paracetamol was the most frequently ingested compound in intentional overdosing.
In rare individuals, paracetamol toxicity can result from normal use. This may be due to individual ("idiosyncratic") differences in the expression and activity of certain enzymes in one of the metabolic pathways that handle paracetamol (see paracetamol's metabolism).
The most common source of ethylene glycol is automotive antifreeze or radiator coolant, where concentrations are high. Other sources of ethylene glycol include windshield deicing agents, brake fluid, motor oil, developing solutions for hobby photographers, wood stains, solvents, and paints. Some people put antifreeze into their cabin’s toilet to prevent it from freezing during the winter, resulting in toxicities when animals drink from the toilet. Small amounts of ethylene glycol may be contained in holiday ornaments such as snow globes.
The most significant source of ethylene glycol is from aircraft de-icing and anti-icing operations, where it is released onto land and eventually to waterways near airports experiencing cold winter climates. It is also used in manufacturing polyester products. In 2006, approximately 1540 kilotonnes of ethylene glycol were manufactured in Canada by three companies in Alberta, with most of the production destined for export.
The mortality rates from AAlPP vary from 40 to 80 percent. The actual numbers of cases may be much larger, as less than five percent of those with AAlPP eventually reach a tertiary care center. Since 1992, when aluminium phosphide became freely available in the market, it had, reportedly, overtaken all other forms of deliberate poisoning, such as organophosphorus and barbiturate poisoning, in North India. In a 25-year-long study on 5,933 unnatural deaths in northwest India, aluminium phosphide poisoning was found to be the major cause of death among all cases of poisonings.
Nicotine poisoning tends to produce symptoms that follow a biphasic pattern. The initial symptoms are mainly due to stimulatory effects and include nausea and vomiting, excessive salivation, abdominal pain, pallor, sweating, hypertension, tachycardia, ataxia, tremor, headache, dizziness, muscle fasciculations, and seizures. After the initial stimulatory phase, a later period of depressor effects can occur and may include symptoms of hypotension and bradycardia, central nervous system depression, coma, muscular weakness and/or paralysis, with difficulty breathing or respiratory failure.
From September 1, 2010 to December 31, 2014, there were at least 21,106 traditional cigarette calls to US poison control centers. During the same period, the ten most frequent adverse effects to traditional cigarettes reported to US poison control centers were vomiting (80.0%), nausea (9.2%), drowsiness (7.8%), cough (7.2%), agitation (6.6%), pallor (3.0%), tachycardia (2.5%), diaphoresis (1.5%), dizziness (1.5%), and diarrhea (1.4%). 95% of traditional cigarette calls were related to children 5 years old or less. Most of the traditional cigarette calls were a minor effect.
Calls to US poison control centers related to e-cigarette exposures involved inhalations, eye exposures, skin exposures, and ingestion, in both adults and young children. Minor, moderate, and serious adverse effects involved adults and young children. Minor effects correlated with e-cigarette liquid poisoning were tachycardia, tremor, chest pain and hypertension. More serious effects were bradycardia, hypotension, nausea, respiratory paralysis, atrial fibrillation and dyspnea. The exact correlation is not fully known between these effects and e-cigarettes. 58% of e-cigarette calls to US poison control centers were related to children 5 years old or less. E-cigarette calls had a greater chance to report an adverse effect and a greater chance to report a moderate or major adverse effect than traditional cigarette calls. Most of the e-cigarette calls were a minor effect.
From September 1, 2010 to December 31, 2014, there were at least 5,970 e-cigarette calls to US poison control centers. During the same period, the ten most frequent adverse effects to e-cigarettes and e-liquid reported to US poison control centers were vomiting (40.4%), eye irritation or pain (20.3%), nausea (16.8%), red eye or conjunctivitis (10.5%), dizziness (7.5%), tachycardia (7.1%), drowsiness (7.1%), agitation (6.3%), headache (4.8%), and cough (4.5%).
Ethylene glycol poisoning is a relatively common occurrence worldwide. Human poisoning often occurs in isolated cases, but may also occur in epidemics. Many cases of poisoning are the result of using ethylene glycol as a cheap substitute for alcohol or intentional ingestions in suicide attempts. Less commonly it has been used as a means of homicide. Children or animals may be exposed by accidental ingestion; children and animals often consume large amounts due to ethylene glycol having a sweet taste. In the United States there were 5816 cases reported to poison centers in 2002. Additionally, ethylene glycol was the most common chemical responsible for deaths reported by US poison centers in 2003. In Australia there were 17 cases reported to the Victorian poison center and 30 cases reported to the New South Wales poison center in 2007. However, these numbers may underestimate actual numbers because not all cases attributable to ethylene glycol are reported to poison control centers. Most deaths from ethylene glycol are intentional suicides; deaths in children due to unintentional ingestion are extremely rare.
In an effort to prevent poisoning, often a bittering agent called denatonium benzoate, known by the trade name Bitrex, is added to ethylene glycol preparations as an adversant to prevent accidental or intentional ingestion. The bittering agent is thought to stop ingestion as part of the human defense against ingestion of harmful substances is rejection of bitter tasting substances. In the United States, eight states (Oregon, California, New Mexico, Virginia, Arizona, Maine, Tennessee, Washington) have made the addition of bittering agents to antifreeze compulsory. Three follow up studies targeting limited populations or suicidal persons to assess the efficacy of bittering agents in preventing toxicity or death have, however, shown limited benefit of bittering ethylene glycol preparations in these two populations. Specifically, Mullins finds that bittering of antifreeze does not reduce reported cases of poisoning of preschoolers in the US state of Oregon. Similarly, White found that adding bittering agents did not decrease the frequency or severity of antifreeze poisonings in children under the age of 5. Additionally, another study by White found that suicidal persons are not deterred by the bittered taste of antifreeze in their attempts to kill themselves. These studies did not focus on poisoning of domestic pets or livestock, for example, or inadvertent exposure to bittered antifreeze among a large population (of non-preschool age children).
Poisoning of a raccoon was diagnosed in 2002 in Prince Edward Island, Canada. An online veterinary manual provides information on lethal doses of ethylene glycol for chicken, cattle, as well as cats and dogs, adding that younger animals may be more susceptible.
Acute hydrogen cyanide poisoning can result from inhalation of fumes from burning polymer products that use nitrile in their production, such as polyurethane, or vinyl. It can also be caused by breakdown of nitroprusside into nitric oxide and cyanide. Nitroprusside may be used during treatment of hypertensive crisis.
In addition to its uses as a pesticide and insecticide, cyanide is contained in tobacco smoke and smoke from building fires, and is present in many seeds or kernels such as those of almonds, apricots, apples, oranges, and in foods including cassava (also known as yuca or manioc), and bamboo shoots. Vitamin B12, in the form of hydroxocobalamin (also spelled hydroxycobalamin), may reduce the negative effects of chronic exposure, and a deficiency can lead to negative health effects following exposure.
Poisoning is a condition or a process in which an organism becomes chemically harmed (poisoned) by a toxic substance or venom of an animal.
Acute poisoning is exposure to a poison on one occasion or during a short period of time. Symptoms develop in close relation to the degree of exposure. Absorption of a poison is necessary for systemic poisoning (that is, in the blood throughout the body). In contrast, substances that destroy tissue but do not absorb, such as lye, are classified as corrosives rather than poisons. Furthermore, many common household medications are not labeled with skull and crossbones, although they can cause severe illness or even death. In the medical sense, toxicity and poisoning can be caused by less dangerous substances than those legally classified as a poison. Toxicology is the study and practice of the symptoms, mechanisms, diagnosis, and treatment of poisoning.
Chronic poisoning is long-term repeated or continuous exposure to a poison where symptoms do not occur immediately or after each exposure. The patient gradually becomes ill, or becomes ill after a long latent period. Chronic poisoning most commonly occurs following exposure to poisons that bioaccumulate, or are biomagnified, such as mercury, gadolinium, and lead.
Contact or absorption of poisons can cause rapid death or impairment. Agents that act on the nervous system can paralyze in seconds or less, and include both biologically derived neurotoxins and so-called nerve gases, which may be synthesized for warfare or industry.
Inhaled or ingested cyanide, used as a method of execution in gas chambers, almost instantly starves the body of energy by inhibiting the enzymes in mitochondria that make ATP. Intravenous injection of an unnaturally high concentration of potassium chloride, such as in the execution of prisoners in parts of the United States, quickly stops the heart by eliminating the cell potential necessary for muscle contraction.
Most biocides, including pesticides, are created to act as poisons to target organisms, although acute or less observable chronic poisoning can also occur in non-target organisms (secondary poisoning), including the humans who apply the biocides and other beneficial organisms. For example, the herbicide 2,4-D imitates the action of a plant hormone, which makes its lethal toxicity specific to plants. Indeed, 2,4-D is not a poison, but classified as "harmful" (EU).
Many substances regarded as poisons are toxic only indirectly, by toxication. An example is "wood alcohol" or methanol, which is not poisonous itself, but is chemically converted to toxic formaldehyde and formic acid in the liver. Many drug molecules are made toxic in the liver, and the genetic variability of certain liver enzymes makes the toxicity of many compounds differ between individuals.
Exposure to radioactive substances can produce radiation poisoning, an unrelated phenomenon.
The of nicotine is 50 mg/kg for rats and 3 mg/kg for mice. 0.5-1.0 mg/kg can be a lethal dosage for adult humans, and 0.1 mg/kg for children. However the widely used human LD estimate of 0.5–1.0 mg/kg was questioned in a 2013 review, in light of several documented cases of humans surviving much higher doses; the 2013 review suggests that the lower limit causing fatal outcomes is 500–1000 mg of ingested nicotine, corresponding to 6.5–13 mg/kg orally. An accidental ingestion of only 6 mg may be lethal to children.
It is unlikely that a person would overdose on nicotine through smoking alone. The US Food and Drug Administration (FDA) stated in 2013: "There are no significant safety concerns associated with using more than one [over the counter] OTC [nicotine replacement therapy] NRT at the same time, or using an OTC NRT at the same time as another nicotine-containing product—including a cigarette." Ingestion of nicotine pharmaceuticals, tobacco products, or nicotine containing plants may also lead to poisoning. Smoking excessive amounts of tobacco has also led to poisoning; a case was reported where two brothers smoked 17 and 18 pipes of tobacco in succession and were both fatally poisoned. Spilling an extremely high concentration of nicotine onto the skin can result in intoxication or even death since nicotine readily passes into the bloodstream following skin contact.
The recent rise in the use of electronic cigarettes, many forms of which are designed to be refilled with nicotine-containing "e-liquid" supplied in small plastic bottles, has renewed interest in nicotine overdoses, especially in the possibility of young children ingesting the liquids. A 2015 report on e-cigarettes by Public Health England noted an "unconfirmed newspaper report of a fatal poisoning of a two-year old child" and two published case reports of children of similar age who had recovered after ingesting e-liquid and vomiting. They also noted case reports of suicides by nicotine. Where adults drank liquid containing up to 1,500 mg of nicotine they recovered (helped by vomiting), but an ingestion apparently of about 10,000 mg was fatal, as was an injection. They commented that "Serious nicotine poisoning seems normally prevented by the fact that relatively low doses of nicotine cause nausea and vomiting, which stops users from further intake." Four adults died in the US and Europe, after intentionally ingesting liquid. Two children, one in the US in 2014 and another in Israel in 2013, died after ingesting liquid nicotine.
The toxicity of aluminium phosphide is attributed to the liberation of phosphine gas, a cytotoxic compound that causes free radical mediated injury, inhibits vital cellular enzymes and is directly corrosive to tissues. The following reaction releases phosphine when AlP reacts with water in the body:
The true number of cases of carbon monoxide poisoning is unknown, since many non-lethal exposures go undetected. From the available data, carbon monoxide poisoning is the most common cause of injury and death due to poisoning worldwide. Poisoning is typically more common during the winter months. This is due to increased domestic use of gas furnaces, gas or kerosene space heaters, and kitchen stoves during the winter months, which if faulty and/or used without adequate ventilation, may produce excessive carbon monoxide. Carbon monoxide detection and poisoning also increases during power outages, when electric heating and cooking appliances become inoperative and residents may temporarily resort to fuel-burning space heaters, stoves, and grills (some of which are safe only for outdoor use but nonetheless are errantly burned indoors).
It has been estimated that more than 40,000 people per year seek medical attention for carbon monoxide poisoning in the United States. 95% of carbon monoxide poisoning deaths in the United States are due to gas space heaters. In many industrialized countries carbon monoxide is the cause of more than 50% of fatal poisonings. In the United States, approximately 200 people die each year from carbon monoxide poisoning associated with home fuel-burning heating equipment. Carbon monoxide poisoning contributes to the approximately 5613 smoke inhalation deaths each year in the United States. The CDC reports, "Each year, more than 500 Americans die from unintentional carbon monoxide poisoning, and more than 2,000 commit suicide by intentionally poisoning themselves." For the 10-year period from 1979 to 1988, 56,133 deaths from carbon monoxide poisoning occurred in the United States, with 25,889 of those being suicides, leaving 30,244 unintentional deaths. A report from New Zealand showed that 206 people died from carbon monoxide poisoning in the years of 2001 and 2002. In total carbon monoxide poisoning was responsible for 43.9% of deaths by poisoning in that country. In South Korea, 1,950 people had been poisoned by carbon monoxide with 254 deaths from 2001 through 2003. A report from Jerusalem showed 3.53 per 100,000 people were poisoned annually from 2001 through 2006. In Hubei, China, 218 deaths from poisoning were reported over a 10-year period with 16.5% being from carbon monoxide exposure.
Decontamination of people exposed to hydrogen cyanide gas only requires removal of the outer clothing and the washing of their hair. Those exposed to liquids or powders generally require full decontamination.
The following guideline values (ppm values rounded) and periods of time-weighted average exposures have been determined in such a way that the carboxyhaemoglobin (COHb) level of 2.5% is not exceeded, even when a normal subject engages in light or moderate exercise:
- 100 mg/m3 (87 ppm) for 15 min
- 60 mg/m3 (52 ppm) for 30 min
- 30 mg/m3 (26 ppm) for 1 h
- 10 mg/m3 (9 ppm) for 8 h
For indoor air quality 7 mg/m3 (6 ppm) for 24 h (so as not to exceed 2% COHb for chronic exposure)