Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A 2009 study reported results from 36 children who had received a stem cell transplant. At the time of follow-up (median time 62 months), 75% of the children were still alive.
By definition, primary immune deficiencies are due to genetic causes. They may result from a single genetic defect, but most are multifactorial. They may be caused by recessive or dominant inheritance. Some are latent, and require a certain environmental trigger to become manifest, like the presence in the environment of a reactive allergen. Other problems become apparent due to aging of bodily and cellular maintenance processes.
In many cases, MHA requires no treatment. However, in extreme cases, blood platelet transfusions may be necessary
LAD is a rare disease, with an estimated prevalence of one in 100,000 births, with no described racial or ethnic predilection. The most common type is LAD1.
A survey of 10,000 American households revealed that the prevalence of diagnosed primary immunodeficiency approaches 1 in 1200. This figure does not take into account people with mild immune system defects who have not received a formal diagnosis.
Milder forms of primary immunodeficiency, such as selective immunoglobulin A deficiency, are fairly common, with random groups of people (such as otherwise healthy blood donors) having a rate of 1:600. Other disorders are distinctly more uncommon, with incidences between 1:100,000 and 1:2,000,000 being reported.
May–Hegglin anomaly (MHA), also known as Döhle leukocyte inclusions with giant platelets and macrothrombocytopenia with leukocyte inclusions, is a rare genetic disorder of the blood platelets that causes them to be abnormally large.
Pelger–Huët anomaly (pronunciation: [pel′gər hyo̅o̅′ət]) is a blood laminopathy associated with the lamin B receptor.
It is characterized by a white blood cell type known as a neutrophil whose nucleus is hyposegmented.
It is a genetic disorder with an autosomal dominant inheritance pattern. Heterozygotes are clinically normal, although their neutrophils may be mistaken for immature cells which may cause mistreatment in a clinical setting. Homozygotes tend to have neutrophils with rounded nuclei that do have some functional problems.
Congenital disorder of glycosylation type IIc or Leukocyte adhesion deficiency-2 (LAD2) is a type of leukocyte adhesion deficiency attributable to the absence of neutrophil sialyl-LewisX, a ligand of P- and E-selectin on vascular endothelium. It is associated with "SLC35C1".
This disorder was discovered in two unrelated Israeli boys 3 and 5 years of age, each the offspring of consanguineous parents. Both had severe mental retardation, short stature, a distinctive facial appearance, and the Bombay (hh) blood phenotype, and both were secretor- and Lewis-negative. They both had had recurrent severe bacterial infections similar to those seen in patients with LAD1, including pneumonia, peridontitis, otitis media, and localized cellulitis. Similar to that in patients with LAD1, their infections were accompanied by pronounced leukocytosis (30,000 to 150,000/mm) but an absence of pus formation at sites of recurrent cellulitis. In vitro studies revealed a pronounced defect in neutrophil motility. Because the genes for the red blood cell H antigen and for the secretor status encode for distinct α1,2-fucosyltransferases and the synthesis of Sialyl-LewisX requires an α1,3-fucosyltransferase, it was postulated that a general defect in fucose metabolism is the basis for this disorder. It was subsequently found that GDP-L-fucose transport into Golgi vesicles was specifically impaired, and then missense mutations in the GDP-fucose transporter cDNA of three patients with LAD2 were discovered. Thus, GDP-fucose transporter deficiency is a cause of LAD2.
Leukocyte adhesion deficiency-1 (LAD1) is a rare and often fatal genetic disorder in humans.
Autoimmune polyendocrine syndrome type 2, a form of autoimmune polyendocrine syndrome also known as Schmidt's syndrome, or APS-II, is the most common form of the polyglandular failure syndromes. It is heterogeneous and has not been linked to one gene. Rather, individuals are at a higher risk when they carry a particular human leukocyte antigen (HLA-DQ2, HLA-DQ8 and HLA-DR4). APS-II affects women to a greater degree than men.
Is a benign dominantly inherited defect of terminal neutrophil differentiation as a result of mutations in the lamin B receptor gene. The characteristic leukocyte appearance was first reported in 1928 by Karel Pelger (1885-1931), a Dutch Hematologist, who described leukocytes with dumbbell-shaped bilobed nuclei, a reduced number of nuclear segments, and coarse clumping of the nuclear chromatin. In 1931, Gauthier Jean Huet (1879-1970), a Dutch Pediatrician, identified it as an inherited disorder.
It is a genetic disorder with an autosomal dominant inheritance pattern. Heterozygotes are clinically normal, although their neutrophils may be mistaken for immature cells, which may cause mistreatment in a clinical setting. Homozygotes tend to have neutrophils with rounded nuclei that do have some functional problems. Homozygous individuals inconsistently have skeletal anomalies such as post-axial polydactyly, short metacarpals, short upper limbs, short stature, or hyperkyphosis.
Identifying Pelger–Huët anomaly is important to differentiate from bandemia with a left-shifted peripheral blood smear and neutrophilic band forms and from an increase in young neutrophilic forms that can be observed in association with infection.
Fechtner syndrome is a variant of Alport syndrome characterized by leukocyte inclusions, macrothrombocytopenia, thrombocytopenia, nephritis, and sensorineural hearing loss. Some patients may also develop cataracts.
Chédiak–Higashi syndrome is a rare autosomal recessive disorder that arises from a mutation of a lysosomal trafficking regulator protein, which leads to a decrease in phagocytosis. The decrease in phagocytosis results in recurrent pyogenic infections, albinism and peripheral neuropathy. It occurs in humans, cattle, blue Persian cats, Australian blue rats, mice, mink, foxes, and the only known captive white orca.
Because the CD18 gene has been cloned and sequenced, this disorder is a potential candidate for gene therapy.
Symptoms(and signs) that are consistent with this disorder are the following:
There is no specific treatment for Chédiak–Higashi syndrome. Bone marrow transplants appear to have been successful in several patients. Infections are treated with antibiotics and abscesses are surgically drained when appropriate. Antiviral drugs such as acyclovir have been tried during the
terminal phase of the disease. Cyclophosphamide and prednisone have been tried. Vitamin C therapy has improved immune function and clotting in some patients.
Neutrophilia is an increase in the absolute neutrophil count in the peripheral circulation. Normal blood values vary by age. Neutrophilia can be caused by a direct problem with blood cells (primary disease). It can also occur as a consequence of an underlying disease (secondary). Most cases of neutrophilia are secondary to inflammation.
Primary causes
- Conditions with normally functioning neutrophils – hereditary neutrophilia, chronic idiopathic neutrophilia
- Pelger–Huet anomaly
- Down syndrome
- Leukocyte adhesion deficiency
- Familial cold urticaria
- Leukemia (chronic myelogenous (CML)) and other myeloproliferative disorders
- Surgical removal of spleen
Secondary causes
- Infection
- Chronic inflammation – especially juvenile rheumatoid arthritis, rheumatoid arthritis, Still's disease, Crohn's disease, ulcerative colitis, granulomatous infections (for example, tuberculosis), and chronic hepatitis
- Cigarette smoking – occurs in 25–50% of chronic smokers and can last up to 5 years after quitting
- Stress – exercise, surgery, general stress
- Medication induced – corticosteroids (for example, prednisone, β-agonists, lithium)
- Cancer – either by growth factors secreted by the tumor or invasion of bone marrow by the cancer
- Increased destruction of cells in peripheral circulation can stimulate bone marrow. This can occur in hemolytic anemia and idiopathic thrombocytopenic purpura
Primary immune deficiency diseases are those caused by inherited genetic mutations. Secondary or acquired immune deficiencies are caused by something outside the body such as a virus or immune suppressing drugs.
Primary immune diseases are at risk to an increased susceptibility to, and often recurrent ear infections, pneumonia, bronchitis, sinusitis or skin infections. Immunodeficient patients may less frequently develop abscesses of their internal organs, autoimmune or rheumatologic and gastrointestinal problems.
- Primary immune deficiencies
- Severe combined immunodeficiency (SCID)
- DiGeorge syndrome
- Hyperimmunoglobulin E syndrome (also known as Job’s Syndrome)
- Common variable immunodeficiency (CVID): B-cell levels are normal in circulation but with decreased production of IgG throughout the years, so it is the only primary immune disorder that presents onset in the late teens years.
- Chronic granulomatous disease (CGD): a deficiency in NADPH oxidase enzyme, which causes failure to generate oxygen radicals. Classical recurrent infection from catalase positive bacteria and fungi.
- Wiskott-Aldrich syndrome (WAS)
- Autoimmune lymphoproliferative syndrome (ALPS)
- Hyper IgM syndrome: X-linked disorder that causes a deficiency in the production of CD40 ligand on activated T-cells. This increases the production and release of IgM into circulation. The B-cell and T-cell numbers are within normal limits. Increased susceptibility to extracellular bacteria and opportunistic infections.
- Leukocyte adhesion deficiency (LAD)
- NF-κB Essential Modifier (NEMO) Mutations
- Selective immunoglobulin A deficiency: the most common defect of the humoral immunity, characterized by a deficiency of IgA. Produces repeating sino-pulmonary and gastrointestinal infections.
- X-linked agammaglobulinemia (XLA; also known as Bruton type agammaglobulinemia): characterized by a deficiency in tyrosine kinase enzyme that blocks B-cell maturation in the bone marrow. No B-cells are produced to circulation and thus, there are no immunoglobulin classes, although there tends to be a normal cell-mediated immunity.
- X-linked lymphoproliferative disease (XLP)
- Ataxia-telangiectasia
- Secondary immune deficiencies
- AIDS
An allergy is an abnormal immune reaction to a harmless antigen.
- Seasonal allergy
- Mastocytosis
- Perennial allergy
- Anaphylaxis
- Food allergy
- Allergic rhinitis
- Atopic dermatitis
As noted above, a leukemoid reaction is typically a response to an underlying medical issue. Causes of leukemoid reactions include:
- Severe hemorrhage (retroperitoneal hemorrhage)
- Drugs
- Use of sulfa drugs
- Use of dapsone
- Use of glucocorticoids
- Use of G-CSF or related growth factors
- All-trans retinoic acid (ATRA)
- Ethylene glycol intoxication
- Infections
- Clostridium difficile
- Tuberculosis
- Pertussis
- Infectious mononucleosis (lymphocyte predominant)
- Visceral larva migrans (eosinophil predominant)
- Asplenia
- Diabetic ketoacidosis
- Organ necrosis
- Hepatic necrosis
- Ischemic colitis
- As a feature of trisomy 21 in infancy (incidence of ~10%)
- As a paraneoplastic phenomenon (rare)
Defined as total lymphocyte count below 1.0x10/L, the cells most commonly affected are CD4+ T cells. Like neutropenia, lymphocytopenia may be acquired or intrinsic and there are many causes. This is not a complete list.
- Inherited immune deficiency - severe combined immunodeficiency, common variable immune deficiency, ataxia-telangiectasia, Wiskott-Aldrich syndrome, immunodeficiency with short-limbed dwarfism, immunodeficiency with thymoma, purine nucleoside phosphorylase deficiency, genetic polymorphism
- Blood cell dysfunction - aplastic anemia
- Infectious diseases - viral (AIDS, SARS, West Nile encephalitis, hepatitis, herpes, measles, others), bacterial (TB, typhoid, pneumonia, rickettsiosis, ehrlichiosis, sepsis), parasitic (acute phase of malaria)
- Medications - chemotherapy (antilymphocyte globulin therapy, alemtuzumab, glucocorticoids)
- Radiation
- Major surgery
- Miscellaneous - ECMO, kidney or bone marrow transplant, hemodialysis, kidney failure, severe burn, celiac disease, severe acute pancreatitis, sarcoidosis, protein-losing enteropathy, strenuous exercise, carcinoma
- Immune dysfunction - arthritis, systemic lupus erythematosus, Sjogren syndrome, myasthenia gravis, systemic vasculitis, Behcet-like syndrome, dermatomyositis, granulomatosis with polyangiitis
- Nutritional/Dietary - alcohol abuse, zinc deficiency
Like neutropenia, symptoms and treatment of lymphocytopenia are directed at the underlying cause of the change in cell counts.
SCS is the most common craniosynostosis syndrome and affects 1 in every 25,000 to 50,000 individuals. It occurs in all racial and ethnic groups, and affects males and females equally. If a parent carries a copy of the SCS gene mutation, then there is a 50% chance their child will also carry a copy of the gene mutation, in which case, the child may or may not show signs of SCS. There is also a 50% chance their child will have two working copies of the gene, and would therefore, not have SCS. If both parents carry a single copy of the SCS gene mutation, then there is a 25% chance their child will have two gene mutation copies (so child would develop severe SCS), a 25% chance their child would have two normal copies of the gene (so would be completely normal), and a 50% chance their child would carry one gene mutation copy and 1 normal copy (so child may or may not display SCS). In rare situations, two normal parents can have a child with SCS due to a "de novo" mutation. The exact cause of the "de novo" mutation is unknown, but it doesn't seem to be related to anything that the parents did or didn't do during the pregnancy. SCS due to a "de novo" mutation is so rare that the proportion of past cases is unknown.
The incidence and prevalence of hyperleukocytosis and leukostasis varies depending on the form of leukemia. Hyperleukocytosis is common in chronic myelogenous leukemia and chronic lymphocytic leukemia but leukostasis rarely occurs. Similarly, the incidence of hyperleukocytosis in people with acute lymphoblastic leukemia is between 10-30% but rarely does this progress to symptomatic leukostasis. The incidence of hyperleukocytosis in acute myeloid leukemia (AML) ranges between 5-20% but leukostasis is less common than hyperleukocytosis in this population; leukostasis tends to occur more often in people with AML with monocytic features.
Pearson syndrome is a mitochondrial disease characterized by sideroblastic anemia and exocrine pancreas dysfunction. Other clinical features are failure to thrive, pancreatic fibrosis with insulin-dependent diabetes and exocrine pancreatic deficiency, muscle and neurologic impairment, and, frequently, early death. It is usually fatal in infancy. The few patients who survive into adulthood often develop symptoms of Kearns-Sayre syndrome.
It is caused by a deletion in mitochondrial DNA. Pearson syndrome is very rare, less than hundred cases have been reported in medical literature worldwide.
The syndrome was first described by pediatric hematologist and oncologist Howard Pearson in 1979; the deletions causing it were discovered a decade later.
Pearson Syndrome is a very rare mitochondrial disorder that is characterized by health conditions such as sideroblastic anemia, liver disease, and exocrine pancreas deficiency.