Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Environmental influences may also cause, or interact with genetics to produce, orofacial clefting. An example of how environmental factors might be linked to genetics comes from research on mutations in the gene "PHF8" that cause cleft lip/palate (see above). It was found that PHF8 encodes for a histone lysine demethylase, and is involved in epigenetic regulation. The catalytic activity of PHF8 depends on molecular oxygen, a fact considered important with respect to reports on increased incidence of cleft lip/palate in mice that have been exposed to hypoxia early during pregnancy. In humans, fetal cleft lip and other congenital abnormalities have also been linked to maternal hypoxia, as caused by e.g. maternal smoking, maternal alcohol abuse or some forms of maternal hypertension treatment. Other environmental factors that have been studied include: seasonal causes (such as pesticide exposure); maternal diet and vitamin intake; retinoids — which are members of the vitamin A family; anticonvulsant drugs; nitrate compounds; organic solvents; parental exposure to lead; alcohol; cigarette use; and a number of other psychoactive drugs (e.g. cocaine, crack cocaine, heroin).
Current research continues to investigate the extent to which folic acid can reduce the incidence of clefting.
Genetic counseling for VWS involves discussion of disease transmission in the autosomal dominant manner and possibilities for penetrance and expression in offspring. Autosomal dominance means affected parents have a 50% chance of passing on their mutated "IRF6" allele to a their child. Furthermore, if a cleft patient has lip pits, he or she has a ten times greater risk of having a child with cleft lip with or without cleft palate than a cleft patient who does not have lip pits. Types of clefting between parents and affected children are significantly associated; however, different types of clefts may occur horizontally and vertically within the same pedigree. In cases where clefting is the only symptom, a complete family history must be taken to ensure the patient does not have non-syndromic clefting.
Twenty to 27% of individuals with a laryngeal cleft also have a tracheoesophageal fistula and approximately 6% of individuals with a fistula also have a cleft. Other congenital anomalies commonly associated with laryngeal cleft are gastro-oesophageal reflux, tracheobronchomalacia, congenital heart defect, dextrocardia and situs inversus. Laryngeal cleft can also be a component of other genetic syndromes, including Pallister-Hall syndrome and G syndrome (Opitz-Friaz syndrome).
The prevalence has been estimated at 1 in 10,000 births, but exact values are hard to know because some that have the symptoms rarely have Pierre-Robin sequence (without any other associated malformation).
Cleft lip and palate occurs in about 1 to 2 per 1000 births in the developed world.
Rates for cleft lip with or without cleft palate and cleft palate alone varies within different ethnic groups.
The highest prevalence rates for (CL ± P) are reported for Native Americans and Asians. Africans have the lowest prevalence rates.
- Native Americans: 3.74/1000
- Japanese: 0.82/1000 to 3.36/1000
- Chinese: 1.45/1000 to 4.04/1000
- Caucasians: 1.43/1000 to 1.86/1000
- Latin Americans: 1.04/1000
- Africans: 0.18/1000 to 1.67/1000
Rate of occurrence of CPO is similar for Caucasians, Africans, North American natives, Japanese and Chinese. The trait is dominant.
It caused about 4,000 deaths globally in 2010 down from 8,400 in 1990.
Prevalence of "cleft uvula" has varied from .02% to 18.8% with the highest numbers found among Chippewa and Navajo and the lowest generally in Africans.
Neonates with TEF or esophageal atresia are unable to feed properly. Once diagnosed, prompt surgery is required to allow the food intake. Some children do experience problems following TEF surgery; they can develop dysphagia and thoracic problems. Children with TEF can also be born with other abnormalities, most commonly those described in VACTERL association - a group of anomalies which often occur together, including heart, kidney and limb deformities. 6% of babies with TEF also have a laryngeal cleft.
Lip pits may be surgically removed either for aesthetic reasons or discomfort due to inflammation caused by bacterial infections or chronic saliva excretion, though spontaneous shrinkage of the lip pits has occurred in some rare cases. Chronic inflammation has also been reported to cause squamous-cell carcinoma. It is essential to completely remove the entire lip pit canal, as mucoid cysts can develop if mucous glands are not removed. A possible side effect of removing the lip pits is a loose lip muscle. Other conditions associated with VWS, including CL, CP, congenital heart defects, etc. are surgically corrected or otherwise treated as they would be if they were non-syndromic.
Because the cause of facial clefts still is unclear, it is difficult to say what may prevent children being born with facial clefts. It seems that folic acid contributes to lowering the risk of a child being born with a facial cleft.
A laryngeal cleft or laryngotracheoesophageal cleft is a rare congenital abnormality in the posterior laryngo-tracheal wall. It occurs in approximately 1 in 10,000 to 20,000 births. It means there is a communication between the oesophagus and the trachea, which allows food or fluid to pass into the airway.
Children affected with PRS usually reach full development and size. However, it has been found internationally that children with PRS are often slightly below average size, raising concerns of incomplete development due to chronic hypoxia related to upper airway obstruction as well as lack of nutrition due to early feeding difficulties or the development of an oral aversion. However, the general prognosis is quite good once the initial breathing and feeding difficulties are overcome in infancy. Most PRS babies grow to lead a healthy and normal adult life.
The most important medical problems are difficulties in breathing and feeding. Affected infants very often need assistance with feeding, for example needing to stay in a lateral(on the side) or prone(on the tummy) position which helps bring the tongue forward and opens up the airway. Babies with a cleft palate will need a special cleft feeding device (such as the Haberman Feeder). Infants who are unable to take in enough calories by mouth to ensure growth may need supplementation with a nasogastric tube. This is related to the difficulty in forming a vacuum in the oral cavity related to the cleft palate, as well as to breathing difficulty related to the posterior position of the tongue. Given the breathing difficulties that some babies with PRS face, they may require more calories to grow (as working of breathing is somewhat like exercising for an infant). Infants, when moderately to severely affected, may occasionally need nasopharyngeal cannulation, or placement of a nasopharyngeal tube to bypass the airway obstruction at the base of the tongue. in some places, children are discharged home with a nasopharyngeal tube for a period of time, and parents are taught how to maintain the tube. Sometimes endotracheal intubation or tracheostomy may be indicated to overcome upper respiratory obstruction. In some centers, a tongue lip adhesion is performed to bring the tongue forward, effectively opening up the airway. Mandibular distraction can be effective by moving the jaw forward to overcome the upper airway obstruction caused by the posterior positioning of the tongue.
Given that a proportion of children with Robin sequence will have Stickler syndrome, it is important that a child with PRS have an evaluation by an optometrist or ophthalmologist in the first year of life looking for myopia that can be seen in Stickler syndrome. Because retinal detachment that can occur in Stickler syndrome is a leading cause of blindness in children, it is very important to recognize and be thoughtful of this diagnosis.
Surgical repair can sometimes result in complications, including:
- Stricture, due to gastric acid erosion of the shortened esophagus
- Leak of contents at the point of anastomosis
- Recurrence of fistula
- Gastro-esophageal reflux disease
- Dysphagia
- Asthma-like symptoms, such as persistent coughing/wheezing
- Recurrent chest infections
- Tracheomalacia
Frontonasal dysplasia (FND) is a congenital malformation of the midface.
For the diagnosis of FND, a patient should present at least two of the following characteristics: hypertelorism (an increased distance between the eyes), a wide nasal root, vertical midline cleft of the nose and/or upper lip, cleft of the wings of the nose, malformed nasal tip, encephalocele (an opening of the skull with protrusion of the brain) or V-shaped hair pattern on the forehead.
The cause of FND remains unknown. FND seems to be sporadic (random) and multiple environmental factors are suggested as possible causes for the syndrome. However, in some families multiple cases of FND were reported, which suggests a genetic cause of FND.
A facial cleft is an opening or gap in the face, or a malformation of a part of the face. Facial clefts is a collective term for all sorts of clefts. All structures like bone, soft tissue, skin etc. can be affected. Facial clefts are extremely rare congenital anomalies. There are many variations of a type of clefting and classifications are needed to describe and classify all types of clefting. Facial clefts hardly ever occur isolated; most of the time there is an overlap of adjacent facial clefts.
A large number of human gene defects can cause ectrodactyly. The most common mode of inheritance is autosomal dominant with reduced penetrance, while autosomal recessive and X-linked forms occur more rarely. Ectrodactyly can also be caused by a duplication on 10q24. Detailed studies of a number of mouse models for ectrodactyly have also revealed that a failure to maintain median apical ectodermal ridge (AER) signalling can be the main pathogenic mechanism in triggering this abnormality.
A number of factors make the identification of the genetic defects underlying human ectrodactyly a complicated process: the limited number of families linked to each split hand/foot malformation (SHFM) locus, the large number of morphogens involved in limb development, the complex interactions between these morphogens, the involvement of modifier genes, and the presumed involvement of multiple gene or long-range regulatory elements in some cases of ectrodactyly. In the clinical setting these genetic characteristics can become problematic and making predictions of carrier status and severity of the disease impossible to predict.
In 2011, a novel mutation in DLX5 was found to be involved in SHFM.
Ectrodactyly is frequently seen with other congenital anomalies. Syndromes in which ectrodactyly is associated with other abnormalities can occur when two or more genes are affected by a chromosomal rearrangement. Disorders associated with ectrodactyly include Ectrodactyly-Ectodermal Dysplasia-Clefting (EEC) syndrome, which is closely correlated to the ADULT syndrome and Limb-mammary (LMS) syndrome, Ectrodactyly-Cleft Palate (ECP) syndrome, Ectrodactyly-Ectodermal Dysplasia-Macular Dystrophy syndrome, Ectrodactyly-Fibular Aplasia/Hypoplasia (EFA) syndrome, and Ectrodactyly-Polydactyly. More than 50 syndromes and associations involving ectrodactyly are distinguished in the London Dysmorphology Database.
There is still some discussion on whether FND is sporadic or genetic. The majority of FND cases are sporadic. Yet, some studies describe families with multiple members with FND. Gene mutations are likely to play an important role in the cause. Unfortunately, the genetic cause for most types of FND remains undetermined.
Davis and Barry 1977 tested allele frequencies in domestic cats. Among the 265 cats observed, there were 101 males and 164 females. Only one cat was recorded to have the ectrodactyly abnormality, illustrating this rare disease.
According to M.P. Ferreira, a case of ectrodactyly was found in a two-month-old male mixed Terrier dog. In another study, Carrig and co-workers also reported a series of 14 dogs with this abnormality proving that although ectrodactyly is an uncommon occurrence for dogs, it is not entirely unheard of.
A common method to treat Velopharyngeal insufficiency is pharyngeal flap surgery, where tissue from the back of the mouth is used to close part of the gap. Other ways of treating velopharyngeal insufficiency is by placing a posterior nasopharyngeal wall implant (commonly cartilage or collagen) or type of soft palate lengthening procedure (i.e. VY palatoplasty).
While cleft is the most common cause of VPI, other significant etiologies exist. These other causes are outlined in the chart below:
The condition develops in the fetus at approximately 4 weeks gestational age, when some form of vascular problem such as blood clotting leads to insufficient blood supply to the face. This can be caused by physical trauma, though there is some evidence of it being hereditary . This restricts the developmental ability of that area of the face. Currently there are no definitive reasons for the development of the condition.
Opitz G/BBB Syndrome is a rare genetic condition caused by one of two major types of mutations: MID1 mutation on the short (p) arm of the X chromosome or a mutation of the 22q11.2 gene on the 22nd chromosome. Since it is a genetic disease, it is an inherited condition. However, there is an extremely wide variability in how the disease presents itself.
In terms of prevention, several researchers strongly suggest prenatal testing for at-risk pregnancies if a MID1 mutation has been identified in a family member. Doctors can perform a fetal sex test through chromosome analysis and then screen the DNA for any mutations causing the disease. Knowing that a child may be born with Opitz G/BBB syndrome could help physicians prepare for the child’s needs and the family prepare emotionally. Furthermore, genetic counseling for young adults that are affected, are carriers or are at risk of carrying is strongly suggested, as well (Meroni, Opitz G/BBB syndrome, 2012). Current research suggests that the cause is genetic and no known environmental risk factors have been documented. The only education for prevention suggested is genetic testing for at-risk young adults when a mutation is found or suspected in a family member.
Macrostomia, (from the Greek prefix "makro-" meaning "large" and from Greek , "mouth") refers to a mouth that is unusually wide.
Macrostomia is characterized as a physical abnormality that causes clefts to form on the face of affected individuals. These clefts can form on either or both sides of the face, but they are most commonly seen on the right cheek and have a higher rate of occurrence in males. Macrostomia is very irregular and on average occurs only once in every 150,000 to 300,000 live births. It's unusual for macrostomia to occur on its own and it is included as a symptom for many diseases including craniofacial microsomia. The clefts result from improper development and fusion of the mandibular and maxillary processes. The clefts cause problems with facial muscle development. The origin of macrostomia is not yet fully understood it could have multiple causes.
Conservative (i.e. no treatment), or surgical . With surgical excision, recurrence is common, usually due to incomplete excision. Often, the tracts of the cyst will pass near important structures, such as the internal jugular vein, carotid artery, or facial nerve, making complete excision impractical.
A branchial cleft cyst is a cyst in the skin of the lateral part of the neck. It can but does not necessarily have an opening to the skin surface called a fistula. The cause is usually a developmental abnormality arising in the early prenatal period, typically failure of obliteration of the second branchial cleft, i.e. failure of fusion of the second and third branchial arches. Less commonly, the cysts can develop from the first, third, or fourth clefts, and their location and the location of associated fistulas differs accordingly.
Hemifacial microsomia (HFM) is a congenital disorder that affects the development of the lower half of the face, most commonly the ears, the mouth and the mandible. It usually occurs on one side of the face, but both sides are sometimes affected. If severe, it may result in difficulties in breathing due to obstruction of the trachea—sometimes even requiring a tracheotomy. With an incidence in the range of 1:3500 to 1:4500, it is the second most common birth defect of the face, after cleft lip and cleft palate. HFM shares many similarities with Treacher Collins syndrome.
There are 4 distinct variations of macrostomia. Classifications are a complete lateral facial cleft, simple macrostomia, macrostomia with diastasis of the facial musculature, and isolated facial musculature diastasis. Each has a different physical appearance with varying levels of severity.
The cleft associated with macrostomia is associated with improper or failed fusion of the mandibular and maxillary processes during embryonic development. This can lead to a variety of abnormalities involving skin, subcutaneous tissue, facial muscles, and the mucous membrane. The severity of each abnormality can vary from minor to severe. Environmental contaminants may play a role in causing macrostomia. Many affected individuals were found in Lagos, an industrial area of Nigeria, where water supplies are known to be contaminated by improper disposal of industrial and domestic waste.