Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In most series, LCLC's comprise between 5% and 10% of all lung cancers.
According to the Nurses' Health Study, the risk of large cell lung carcinoma increases with a previous history of tobacco smoking, with a previous smoking duration of 30 to 40 years giving a relative risk of approximately 2.3 compared to never-smokers, and a duration of more than 40 years giving a relative risk of approximately 3.6.
Another study concluded that cigarette smoking is the predominant cause of large cell lung cancer. It estimated that the odds ratio associated with smoking two or more packs/day for current smokers is 37.0 in men and 72.9 in women.
Although reliable and comprehensive incidence statistics are nonexistent, LCLC-RP is a rare tumor, with only a few hundred cases described in the scientific literature to date. LCLC's made up about 10% of lung cancers in most historical series, equating to approximately 22,000 cases per year in the U.S. Of these LCLC cases, it is estimated that about 1% will eventually develop the rhabdoid phenotype during tumor evolution and progression. In one large series of 902 surgically resected lung cancers, only 3 cases (0.3%) were diagnosed as LCLC-RP. In another highly selected series of large-cell lung carcinoma cases, only 4 of 45 tumors (9%) were diagnosed as the rhabdoid phenotype using the 10% criterion, but another 10 (22%) had at least some rhabdoid cell formation. It appears likely, therefore, that LCLC-RP probably comprises between 0.1% and 1.0% of all lung malignancies.
Similar to nearly all variants of lung carcinoma, large cell lung carcinoma with rhabdoid phenotype appears to be highly related to tobacco smoking. It also appears to be significantly more common in males than in females.
The true incidence, prevalence, and mortality of GCCL is generally unknown due to a lack of accurate cancer data on a national level. It is known to be a very rare tumor variant in all populations examined, however. In an American study of a database of over 60,000 lung cancers, GCCL comprised between 0.3% and 0.4% of primary pulmonary malignancies, with an age-adjusted incidence rate of about 3 new cases per million persons per year. With approximately 220,000 total lung cancers diagnosed in the US each year, the proportion suggests that approximately 660 and 880 new cases are diagnosed in Americans annually.
However, in a more recent series of 4,212 consecutive lung cancer cases, only one (0.024%) lesion was determined to be a "pure" giant-cell carcinoma after complete sectioning of all available tumor tissue. While some evidence suggests GCCL may have been considerably more common several decades ago, with one series identifying 3.4% of all lung carcinomas as giant-cell malignancies, it is possible that this number reflect
Most published case series and reports on giant cell-containing lung cancers show that they are diagnosed much more frequently in men than they are in women, with some studies showing extremely high male-to-female ratios (12:1 or more). In a study of over 150,000 lung cancer victims in the US, however, the gender ratio was just over 2:1, with women actually having a higher relative proportion of giant-cell cancers (0.4%) than men (0.3%).
Giant-cell carcinomas have been reported to be diagnosed in a significantly younger population than all non-small-cell carcinomas considered as a group. Like nearly all lung carcinomas, however, GCCs are exceedingly rare in very young people: in the US SEER program, only 2 cases were recorded to occur in persons younger than 30 years of age between 1983 and 1987. The average age at diagnosis of these tumors has been estimated at 60 years.
The vast majority of individuals with GCCL are heavy smokers.
Although the definitions of "central" and "peripheral" can vary between studies, GCCL are consistently diagnosed much more frequently in the lung periphery. In a review of literature compiled by Kallenburg and co-workers, less than 30% of GCCLs arose in the hilum or other parts of the "central" pulmonary tree.
A significant predilection for genesis of GCCL in the upper lobes of victims has also been postulated.
Giant-cell lung cancers have long been considered to be exceptionally aggressive malignancies that grow very rapidly and have a very poor prognosis.
Many small series have suggested that the prognosis of lung tumors with giant cells is worse than that of most other forms of non-small-cell lung cancer (NSCLC), including squamous cell carcinoma, and spindle cell carcinoma.
The overall five-year survival rate in GCCL varies between studies but is generally considered to be very low. The (US) Armed Forces Institute of Pathology has reported a figure of 10%, and in a study examining over 150,000 lung cancer cases, a figure of 11.8% was given. However, in the latter report the 11.8% figure was based on data that included spindle cell carcinoma, a variant which is generally considered to have a less dismal prognosis than GCCL. Therefore, the likely survival of "pure" GCCL is probably lower than the stated figure.
In the large 1995 database review by Travis and colleagues, giant-cell carcinoma has the third-worst prognosis among 18 histological forms of lung cancer. (Only small-cell carcinoma and large-cell carcinoma had shorter average survival.)
Most GCCL have already grown and invaded locally and/or regionally, and/or have already metastasized distantly, and are inoperable, at the time of diagnosis.
LCLC-RP are considered to be especially aggressive tumors with a dismal prognosis. Many published cases have shown short survival times after diagnosis. Some studies suggest that, as the proportion of rhabdoid cells in the tumor increases, the prognosis tends to worsen, although this is most pronounced when the proportion of rhabdoid cells exceeds 5%. With regard to "parent" neoplasms other than LCLC, adenocarcinomas with rhabdoid features have been reported to have worse prognoses than adenocarcinomas without rhabdoid features, although an "adenocarcinoma with rhabdoid phenotype" tumor variant has not been specifically recognized as a distinct entity under the WHO-2004 classification system.
Interestingly, there are case reports of rhabdoid carcinomas recurring after unusually long periods, which is unusual for a fast-growing, aggressive tumor type. One report described a very early stage patient whose tumor recurred 6 years after initial treatment. Although rapidly progressive, fulminant courses seem to be the rule in this entity, long-term survival has also been noted, even post-metastectomy in late stage, distant metastatic disease.
Reliable comprehensive incidence statistics for c-SCLC are unavailable. In the literature, the frequency with which the c-SCLC variant is diagnosed largely depends on the size of tumor samples, tending to be higher in series where large surgical resection specimens are examined, and lower when diagnoses are based on small cytology and/or biopsy samples. Tatematsu "et al." reported 15 cases of c-SCLC (12%) in their series of 122 consecutive SCLC patients, but only 20 resection specimens were examined. In contrast, Nicholson "et al." found 28 c-SCLC (28%) in a series of 100 consecutive resected SCLC cases. It appears likely, then, that the c-SCLC variant comprises 25% to 30% of all SCLC cases.
As the incidence of SCLC has declined somewhat in the U.S. in recent decades, it is likely that c-SCLC has also decreased in incidence. Nevertheless, small cell carcinomas (including the c-SCLC variant) still comprise 15–20% of all lung cancers, with c-SCLC probably accounting for 4–6%. With 220,000 cases of newly diagnosed lung cancer in the U.S. each year, it can be estimated that between 8,800 and 13,200 of these are c-SCLC.
In a study of 408 consecutive patients with SCLC, Quoix and colleagues found that presentation as a solitary pulmonary nodule (SPN) is particularly indicative of a c-SCLC — about 2/3 of their SPN's were pathologically confirmed to be c-SCLC's containing a large cell carcinoma component.
LCC is, in effect, a "diagnosis of exclusion", in that the tumor cells lack light microscopic characteristics that would classify the neoplasm as a small-cell carcinoma, squamous-cell carcinoma, adenocarcinoma, or other more specific histologic type of lung cancer.
LCC is differentiated from small-cell lung carcinoma (SCLC) primarily by the larger size of the anaplastic cells, a higher cytoplasmic-to-nuclear size ratio, and a lack of "salt-and-pepper" chromatin.
Current consensus is that the long-term prognosis of c-SCLC patients is determined by the SCLC component of their tumor, given that "pure" SCLC seems to have the worst long-term prognosis of all forms of lung cancer. Although data on c-SCLC is very sparse, some studies suggest that survival rates in c-SCLC may be even worse than that of pure SCLC, likely due to the lower rate of complete response to chemoradiation in c-SCLC, although not all studies have shown a significant difference in survival.
Untreated "pure" SCLC patients have a median survival time of between 4 weeks and 4 months, depending on stage and performance status at the time of diagnosis.
Given proper multimodality treatment, SCLC patients with limited disease have median survival rates of between 16 and 24 months, and about 20% will be cured. In patients with extensive disease SCLC, although 60% to 70% will have good-to-complete responses to treatment, very few will be cured, with a median survival of only 6 to 10 months.
Some evidence suggests that c-SCLC patients who continue to smoke may have much worse outcomes after treatment than those who quit.
Genetic changes are very high in SCLC and LCNEC, but usually low for TC, intermediate for AC.
Lung cancer is a large and exceptionally heterogeneous family of malignancies. Over 50 different histological variants are explicitly recognized within the 2004 revision of the World Health Organization (WHO) typing system ("WHO-2004"), currently the most widely used lung cancer classification scheme. Many of these entities are rare, recently described, and poorly understood. However, since different forms of malignant tumors generally exhibit diverse genetic, biological, and clinical properties — including response to treatment — accurate classification of lung cancer cases are critical to assuring that patients with lung cancer receive optimum management.
Under WHO-2004, lung carcinomas are divided into 8 major taxa:
- Squamous cell carcinoma
- Small cell carcinoma
- Adenocarcinoma
- Large cell carcinoma
- Adenosquamous carcinoma
- Sarcomatoid carcinoma
- Carcinoid tumor
- Salivary gland-like carcinoma
Salivary gland–like carcinomas of the lung generally refers a class of rare cancers that arise from the uncontrolled cell division (mitosis) of mutated cancer stem cells in lung tissue. They take their name partly from the appearance of their abnormal cells, whose structure and features closely resemble those of cancers that form in the major salivary glands (parotid glands, submandibular glands and sublingual glands) of the head and neck. Carcinoma is a term for malignant neoplasms derived from cells of epithelial lineage, and/or that exhibit cytological or tissue architectural features characteristically found in epithelial cells.
This class of primary lung cancers contains several histological variants, including mucoepidermoid carcinoma of the lung, adenoid cystic carcinoma of the lung, epithelial-myoepithelial carcinoma of the lung, and other (even more rare) variants. .
Lung cancers have been historically classified using two major paradigms. Histological classification systems group lung cancers according to the appearance of the cells and surrounding tissues when they are viewed under a microscope. Clinical classification systems divide lung cancers into groups based on medical criteria, particularly their response to different treatment regimens.
Before the mid-1900s, lung cancer was considered to be a single disease entity, with all forms treated similarly. In the 1960s, small cell lung carcinoma (SCLC) was recognized as a unique form of lung cancer, based both on its appearance (histology) and its clinical properties, including much greater susceptibility to chemotherapy and radiation, more rapid growth rate, and its propensity to metastasize widely early on in its course. Since then, most oncologists have based patient treatment decisions on a dichotomous division of lung cancers into SCLC and non-small cell lung carcinomas (NSCLC), with the former being treated primarily with chemoradiation, and the latter with surgery.
An explosion of new knowledge, accumulated mainly over the last 20 years, has proved that lung cancers should be considered an extremely heterogeneous family of neoplasms with widely varying genetic, biological, and clinical characteristics, particularly their responsiveness to the large number of newer treatment protocols. Well over 50 different histological variants are now recognized under the 2004 revision of the World Health Organization ("WHO-2004") typing system, currently the most widely used lung cancer classification scheme. Recent studies have shown beyond doubt that the old clinical classification paradigm of "SCLC vs. NSCLC" is now obsolete, and that correct "subclassification" of lung cancer cases is necessary to assure that lung cancer patients receive optimum management.
Approximately 98% of lung cancers are carcinoma, which are tumors composed of cells with epithelial characteristics. LCLC's are one of 8 major groups of lung carcinomas recognized in WHO-2004:
- Squamous cell carcinoma
- Small cell carcinoma
- Adenocarcinoma
- Large cell carcinoma
- Adenosquamous carcinoma
- Sarcomatoid carcinoma
- Carcinoid tumor
- Salivary gland-like carcinoma
Adenosquamous lung carcinoma (AdSqLC) is a biphasic malignant tumor arising from lung tissue that is composed of at least 10% by volume each of squamous cell carcinoma (SqCC) and adenocarcinoma (AdC) cells.
Malignant germ cell tumors of the mediastinum are uncommon, representing only 3 to 10% of tumors originating in the mediastinum. They are much less common than germ cell tumors arising in the testes, and account for only 1 to 5% of all germ cell neoplasms.
Syndromes associated with mediastinal germ cell tumors include Hematologic Neoplasia and Klinefelter's syndrome.
Mast cell tumors mainly occur in older adult dogs, but have been known to occur on rare occasions in puppies. The following breeds are commonly affected by mast cell tumors:
- Boxer
- Staffordshire bull terrier
- Bulldog
- Basset hound
- Weimaraner
- Boston terrier
- Great Dane
- Golden retriever
- Labrador retriever
- Beagle
- German shorthaired pointer
- Scottish terrier
- Pug
- Shar pei
- Rhodesian ridgeback
Pulmonary neuroendocrine tumors are neuroendocrine tumors localized to the lung: bronchus or pulmonary parenchyma.
Pulmonary neuroendocrine tumors include a spectrum of tumors from the low-grade typical pulmonary carcinoid tumor and intermediate-grade atypical pulmonary carcinoid tumor to the high-grade pulmonary large cell neuroendocrine carcinoma (LCNEC) and pulmonary small cell carcinoma (SCLC), with significant clinical, epidemiologic and genetic differences.
Esthesioneuroblastoma is a slow developing but malignant tumor with high reoccurrence rates because of its anatomical position. The tumor composition, location and metastatic characteristics as well as the treatment plan determine prognosis. Common clinical classification systems for esthesioneuroblastoma include the Kadish classification and the Dulguerov classfictation. Histopathological characteristics on top of Kadish classification can further determine cancer prognosis. In severe, Kadish class C tumors, Haym's grades of pathology are important for prognosis. Patients with low grade Kadish class C tumors have a 10-year survival rate of 86 percent compared to patients with high grade class C tumors who have a survival rate of 28 percent. Surgically treated patients with high grade tumors are more likely to experience leptomeningeal metastases or involvement of the cerebral spinal fluid unlike patients with low grade tumors who usually only see local recurrence. Survival rates for treated esthesioneuroblastoma are best for surgery with radiotherapy (65%), then for radiotherapy and chemotherapy (51%), just surgery (48%), surgery, radiotherapy and chemotherapy (47) and finally just radiotherapy (37%). From the literature, radiotherapy and surgery seem to boast the best outcome for patients. However, it is important to understand that to some degree, prognosis is related to tumor severity. More progressed, higher grade tumors would result in chemotherapy or radiotherapy as the only treatment. It is no surprise that the prognosis would be worse in these cases.
A Hürthle cell () or Askanazy cell () is a cell in the thyroid that is often associated with Hashimoto's thyroiditis as well as benign and malignant tumors (Hürthle cell adenoma and Hürthle cell carcinoma, a subtype of follicular thyroid cancer). This version is a relatively rare form of differentiated thyroid cancer, accounting for only 3-10% of all differentiated thyroid cancers. Oncocytes in the thyroid are often called Hürthle cells. Although the terms oncocyte, oxyphilic cell, and Hürthle cell are used interchangeably, Hürthle cell is used only to indicate cells of thyroid follicular origin.
Two types of mast cell tumors have been identified in cats, a mast cell type similar to dogs and a histiocytic type that appears as subcutaneous nodules and may resolve spontaneously. Young Siamese cats are at an increased risk for the histiocytic type, although the mast cell type is the most common in all cats and is considered to be benign when confined to the skin.
Mast cell tumors of the skin are usually located on the head or trunk. Gastrointestinal and splenic involvement is more common in cats than in dogs; 50 percent of cases in dogs primarily involved the spleen or intestines. Gastrointestinal mast cell tumors are most commonly found in the muscularis layer of the small intestine, but can also be found in the large intestine. It is the third most common intestinal tumor in cats, after lymphoma and adenocarcinoma.
Diagnosis and treatment are similar to that of the dog. Cases involving difficult to remove or multiple tumors have responded well to strontium-90 radiotherapy as an alternative to surgery. The prognosis for solitary skin tumors is good, but guarded for tumors in other organs. Histological grading of tumors has little bearing on prognosis.
The prognosis for DSRCT remains poor. Prognosis depends upon the stage of the cancer. Because the disease can be misdiagnosed or remain undetected, tumors frequently grow large within the abdomen and metastasize or seed to other parts of the body.
There is no known organ or area of origin. DSRCT can metastasize through lymph nodes or the blood stream. Sites of metastasis include the spleen, diaphragm, liver, large and small intestine, lungs, central nervous system, bones, uterus, bladder, genitals, abdominal cavity, and the brain.
A multi-modality approach of high-dose chemotherapy, aggressive surgical resection, radiation, and stem cell rescue improves survival for some patients. Reports have indicated that patients will initially respond to first line chemotherapy and treatment but that relapse is common.
Some patients in remission or with inoperable tumor seem to benefit from long term low dose chemotherapy, turning DSRCT into a chronic disease.
Human papillomavirus infection (HPV) has been associated with SCC of the oropharynx, lung, fingers and anogenital region.
When the tumor is large and there is presence of necrosis and local recurrence, the prognosis is poor. Presence of metastasis occurs in more than 50% cases and the common places of its occurrence are the bone, lymph node and lungs. Five-year survival rates, which are reported to be between 50-65%, can be misleading because the disease is prone to late metastasis or recurrence. Ten and twenty-year survival rates are 33% and 10%, respectively.
There are no known risk factors that have been identified specific to the disease. The tumor appears to arise from the primitive cells of childhood, and is considered a childhood cancer.
Research has indicated that there is a chimeric relationship between desmoplastic small-round-cell tumor (DSRCT) and Wilms' tumor and Ewing's sarcoma. Together with neuroblastoma and non-Hodgkin's lymphoma, they form the small cell tumors.
DSRCT is associated with a unique chromosomal translocation t(11;22)(p13:q12) resulting in an EWS/WT1 transcript that is diagnostic of this tumor. This transcript codes for a protein that acts as a transcriptional activator that fails to suppress tumor growth.
The EWS/WT1 translocation product targets ENT4. ENT4 is also known as PMAT.
Esthesioneuroblastoma accounts for 2% of all intranasal tumors with an incidence of 0.4 cases per million people. Fewer than 700 cases of esthesioneuroblastoma have been seen in the US since 1988. Fewer than 400 unique cases have been reported globally. Esthesioneuroblastoma can occur at any time, with peak occurrence reported in the second and sixth decade of life.
When associated with the lung, it is typically a centrally located large cell cancer (non-small cell lung cancer or NSCLC). It often has a paraneoplastic syndrome causing ectopic production of parathyroid hormone-related protein (PTHrP), resulting in hypercalcemia, however paraneoplastic syndrome is more commonly associated with small cell lung cancer.
It is primarily due to smoking.