Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A study by the Agency for Healthcare Research and Quality (AHRQ) found that of the 3.8 million births that occurred in the United States in 2011, approximately 6.1% (231,900) were diagnosed with low birth weight (<2,500 g). Approximately 49,300 newborns (1.3%) weighed less than 1,500 grams (VLBW). Infants born at low birth weight are at a higher risk for developing neonatal infection.
LBW is closely associated with fetal and Perinatal mortality and Morbidity, inhibited growth and cognitive development, and chronic diseases later in life. At the population level, the proportion of babies with a LBW is an indicator of a multifaceted public-health problem that includes long-term maternal malnutrition, ill health, hard work and poor health care in pregnancy. On an individual basis, LBW is an important predictor of newborn health and survival and is associated with higher risk of infant and childhood mortality.
Low birth weight constitutes as sixty to eighty percent of the infant mortality rate in developing countries. Infant mortality due to low birth weight is usually directly causal, stemming from other medical complications such as preterm birth, poor maternal nutritional status, lack of prenatal care, maternal sickness during pregnancy, and an unhygienic home environment. According to an analysis by University of Oregon, reduced brain volume in children is also tied to low birth-weight.
A number of factors have been identified that are linked to a higher risk of a preterm birth such as being less than 18 years of age. Maternal height and weight can play a role.
Further, in the US and the UK, black women have preterm birth rates of 15–18%, more than double than that of the white population. Filipinos are also at high risk of premature birth, and it is believed that nearly 11-15% of Filipinos born in the U.S. (compared to other Asians at 7.6% and whites at 7.8%) are premature. Filipinos being a big risk factor is evidenced with the Philippines being the 8th highest ranking in the world for preterm births, the only non-African country in the top 10. This discrepancy is not seen in comparison to other Asian groups or Hispanic immigrants and remains unexplained.
Pregnancy interval makes a difference as women with a six-month span or less between pregnancies have a two-fold increase in preterm birth. Studies on type of work and physical activity have given conflicting results, but it is opined that stressful conditions, hard labor, and long hours are probably linked to preterm birth.
A history of spontaneous (i.e., miscarriage) or surgical abortion has been associated with a small increase in the risk of preterm birth, with an increased risk with increased number of abortions, although it is unclear whether the increase is caused by the abortion or by confounding risk factors (e.g., socioeconomic status). Increased risk has not been shown in women who terminated their pregnancies medically. Pregnancies that are unwanted or unintended are also a risk factor for preterm birth.
Adequate maternal nutrition is important. Women with a low BMI are at increased risk for preterm birth. Further, women with poor nutrition status may also be deficient in vitamins and minerals. Adequate nutrition is critical for fetal development and a diet low in saturated fat and cholesterol may help reduce the risk of a preterm delivery. Obesity does not directly lead to preterm birth; however, it is associated with diabetes and hypertension which are risk factors by themselves. To some degree those individuals may have underlying conditions (i.e., uterine malformation, hypertension, diabetes) that persist.
Women with celiac disease have an increased risk of the development of preterm birth. The risk of preterm birth is more elevated when celiac disease remains undiagnosed and untreated.
Marital status is associated with risk for preterm birth. A study of 25,373 pregnancies in Finland revealed that unmarried mothers had more preterm deliveries than married mothers (P=0.001). Pregnancy outside of marriage was associated overall with a 20% increase in total adverse outcomes, even at a time when Finland provided free maternity care. A study in Quebec of 720,586 births from 1990 to 1997 revealed less risk of preterm birth for infants with legally married mothers compared with those with common-law wed or unwed parents.
Genetic make-up is a factor in the causality of preterm birth. Genetics has been a big factor into why Filipinos have a high risk of premature birth as the Filipinos have a large prevalence of mutations that help them be predisposed to premature births. An intra- and transgenerational increase in the risk of preterm delivery has been demonstrated. No single gene has been identified.
Subfertility is associated with preterm birth. Couples who have tried more than 1 year versus those who have tried less than 1 year before achieving a spontaneous conception have an adjusted odds ratio of 1.35 (95% confidence interval 1.22-1.50) of preterm birth. Pregnancies after IVF confers a greater risk of preterm birth than spontaneous conceptions after more than 1 year of trying, with an adjusted odds ratio of 1.55 (95% CI 1.30-1.85).
The use of fertility medication that stimulates the ovary to release multiple eggs and of IVF with embryo transfer of multiple embryos has been implicated as an important factor in preterm birth. Maternal medical conditions increase the risk of preterm birth. Often labor has to be induced for medical reasons; such conditions include high blood pressure, pre-eclampsia, maternal diabetes, asthma, thyroid disease, and heart disease.
In a number of women anatomical issues prevent the baby from being carried to term. Some women have a weak or short cervix (the strongest predictor of premature birth) Women with vaginal bleeding during pregnancy are at higher risk for preterm birth. While bleeding in the third trimester may be a sign of placenta previa or placental abruption – conditions that occur frequently preterm – even earlier bleeding that is not caused by these conditions is linked to a higher preterm birth rate. Women with abnormal amounts of amniotic fluid, whether too much (polyhydramnios) or too little (oligohydramnios), are also at risk.
The mental status of the women is of significance. Anxiety and depression have been linked to preterm birth.
Finally, the use of tobacco, cocaine, and excessive alcohol during pregnancy increases the chance of preterm delivery. Tobacco is the most commonly abused drug during pregnancy and contributes significantly to low birth weight delivery. Babies with birth defects are at higher risk of being born preterm.
Passive smoking and/or smoking before the pregnancy influences the probability of a preterm birth. The World Health Organization published an international study in March 2014.
Presence of anti-thyroid antibodies is associated with an increased risk preterm birth with an odds ratio of 1.9 and 95% confidence interval of 1.1–3.5.
A 2004 systematic review of 30 studies on the association between intimate partner violence and birth outcomes concluded that preterm birth and other adverse outcomes, including death, are higher among abused pregnant women than among non-abused women.
The Nigerian cultural method of abdominal massage has been shown to result in 19% preterm birth among women in Nigeria, plus many other adverse outcomes for the mother and baby. This ought not be confused with massage conducted by a fully trained and licensed massage therapist or by significant others trained to provide massage during pregnancy, which has been shown to have numerous positive results during pregnancy, including the reduction of preterm birth, less depression, lower cortisol, and reduced anxiety.
In sheep, intrauterine growth restriction can be caused by heat stress in early to mid pregnancy. The effect is attributed to reduced placental development causing reduced fetal growth. Hormonal effects appear implicated in the reduced placental development. Although early reduction of placental development is not accompanied by concurrent reduction of fetal growth; it tends to limit fetal growth later in gestation. Normally, ovine placental mass increases until about day 70 of gestation, but high demand on the placenta for fetal growth occurs later. (For example, research results suggest that a normal average singleton Suffolk x Targhee sheep fetus has a mass of about 0.15 kg at day 70, and growth rates of about 31 g/day at day 80, 129 g/day at day 120 and 199 g/day at day 140 of gestation, reaching a mass of about 6.21 kg at day 140, a few days before parturition.)
In adolescent ewes (i.e. ewe hoggets), overfeeding during pregnancy can also cause intrauterine growth restriction, by altering nutrient partitioning between dam and conceptus. Fetal growth restriction in adolescent ewes overnourished during early to mid pregnancy is not avoided by switching to lower nutrient intake after day 90 of gestation; whereas such switching at day 50 does result in greater placental growth and enhanced pregnancy outcome. Practical implications include the importance of estimating a threshold for "overnutrition" in management of pregnant ewe hoggets. In a study of Romney and Coopworth ewe hoggets bred to Perendale rams, feeding to approximate a conceptus-free live mass gain of 0.15 kg/day (i.e. in addition to conceptus mass), commencing 13 days after the midpoint of a synchronized breeding period, yielded no reduction in lamb birth mass, where compared with feeding treatments yielding conceptus-free live mass gains of about 0 and 0.075 kg/day.
In both of the above models of IUGR in sheep, the absolute magnitude of uterine blood flow is reduced. Evidence of substantial reduction of placental glucose transport capacity has been observed in pregnant ewes that had been heat-stressed during placental development.
IUGR affects 3-10% of pregnancies. 20% of stillborn infants have IUGR. Perinatal mortality rates are 4-8 times higher for infants with IUGR, and morbidity is present in 50% of surviving infants.
According to the theory of thrifty phenotype, intrauterine growth restriction triggers epigenetic responses in the fetus that are otherwise activated in times of chronic food shortage. If the offspring actually develops in an environment rich in food it may be more prone to metabolic disorders, such as obesity and type II diabetes.
Not all newborns that are SGA are pathologically growth restricted and, in fact, may be constitutionally small. If small for gestational age babies have been the subject of intrauterine growth restriction (IUGR), formerly known as intrauterine growth retardation, the term SGA associated with IUGR is used.
Intrauterine growth restriction (IUGR) refers to a condition in which a fetus is unable to achieve its genetically determined potential size. This functional definition seeks to identify a population of fetuses at risk for modifiable but otherwise poor outcomes. This definition intentionally excludes fetuses that are small for gestational age (SGA) but are not pathologically small. Infants born SGA with severe short stature (or severe SGA) are defined as having a length less than 2.5 standard deviation scores below the mean.
A related term is low birth weight (LBW), defined as an infant with a birth weight (that is, mass at the time of birth) of less than 2500 g (5 lb 8 oz), regardless of gestational age at the time of birth.
Related definitions include very low birth weight (VLBW) which is less than 1500 g, and extremely low birth weight (ELBW) which is less than 1000 g. Normal Weight at term delivery is 2500 g - 4200 g.
SGA is not a synonym of LBW, VLBW or ELBW.
Example: 35-week gestational age delivery, 2250g weight is appropriate for gestational age but is still LBW. One third of low-birth-weight neonates - infants weighing less than 2500g - are small for gestational age.
There is an 8.1% incidence of low birth weight in developed countries, and 6–30% in developing countries. Much of this can be attributed to the health of the mother during pregnancy. One third of babies born with a low birth weight are also small for gestational age. Infants that are born at low birth weights are at risk of developing neonatal infection.
Both low and high maternal serum Vitamin D (25-OH) are associated with higher incidence SGA in white women, although the correlation does not seem to hold for African American women.
Being small for gestational age is broadly either:
- Being constitutionally small, wherein the state is basically a genetic trait of the baby.
- Intrauterine growth restriction, also called "pathological SGA"
Non-specific effects are frequently different in males and females. There are accumulating data illustrating that males and females may respond differently to vaccination, both in terms of the quality and quantity of the immune response. If true, then we must consider whether vaccination schedules should differ for males and females, or as has been suggested "should we treat the sexes differently in order to treat them equally?"
Non-specific effects of vaccines (also called "heterologous effects" or "off-target effects") are effects which go beyond the specific protective effects against the targeted diseases. Non-specific effects can be strongly beneficial, increasing protection against non-targeted infections, but also at times negative, increasing susceptibility to non-targeted infections. This depends on both the vaccine and the sex of the infant.
All live attenuated vaccines studied so far (BCG vaccine, measles vaccine, oral polio vaccine, smallpox vaccine) have been shown to reduce mortality more than can be explained by prevention of the targeted infections. In contrast, inactivated vaccines (diphtheria-tetanus-pertussis vaccine (DTP), hepatitis B vaccine, inactivated polio vaccine) may increase overall mortality despite providing protection against the target diseases.
These effects may be long-lasting, at least up to the time point where a new type of vaccine is given. The non-specific effects can be very pronounced, with significant effects on overall mortality and morbidity. In a situation with herd immunity to the target disease, the non-specific effects can be more important for overall health than the specific vaccine effects.
The non-specific effects should not be confused with the side effects of vaccines (such as local reactions at the side of vaccination or general reactions such as fever, head ache or rash, which usually resolve within days to weeks – or in rare cases anaphylaxis). Rather, non-specific effects represent a form of general immunomodulation, with important consequences for the immune system's ability to handle subsequent challenges.
It is estimated that millions of child deaths in low income countries could be prevented every year if the non-specific effects of vaccines were taken into consideration in immunization programs.