Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Besides complications of surgery and anesthesia in general, there may be drainage, swelling, or redness of the incision, gagging or coughing during eating or drinking, or pneumonia due to aspiration of food or liquids. Undesirable complications are estimated to occur in 10-30% of cases. If medical therapy is unsuccessful and surgery cannot be performed due to concurrent disease (such as heart or lung problems) or cost, euthanasia may be necessary if the animal's quality of life is considered unacceptable due to the disease.
Fazio–Londe disease is linked to a genetic mutation in the "SLC52A3" gene on chromosome 20 (locus: 20p13). It is allelic and phenotypically similar to Brown–Vialetto–Van Laere syndrome.
The condition is inherited in an autosomal recessive manner.
The gene encodes the intestinal riboflavin transporter (hRFT2).
There is no known treatment for FTS, as the cause is not yet known. There are conflicting reports on whether the paralysis is reversible; some sources claim that moving an elephant away from the area in which it contracted the condition will allow it to recover, while others claim that damage to the trunk is irreversible.
In some extreme cases, wildlife managers have killed affected elephants for humane reasons.
There is risk of perforation of the esophagus with the use of dilators for treatment. Furthermore, it is one of the risk factors for developing squamous cell carcinoma of the oral cavity, esophagus, and hypopharynx.
"Infant’s persistent thumb-clutched hand, flexion-adduction deformity of the thumb, pollex varus, thumb in the hand deformity."
Congenital clasped thumb describes an anomaly which is characterized by a fixed thumb into the palm at the metacarpophalangeal joint in one or both hands.
The incidence and genetic background are unknown. A study of Weckesser et al. showed that boys are twice as often affected with congenital clasped thumb compared to girls. The anomaly is in most cases bilateral (present in both hands).
A congenital clasped thumb can be an isolated anomaly, but can also be attributed to several syndromes.
Onset of first symptom has been reported between 1–12 years, with a mean age of onset at 8 years. Clinical course can be divided into early (< 6 yrs age, predominance of respiratory symptoms) and late course (6–20 years of age, predominance of motor symptoms on superior limbs). Progression to involve other cranial nerve muscles occurs over a period of months or years. In the Gomez review facial nerve was affected in all cases while hypoglossal nerve was involved in all except one case. Other cranial nerves involved were vagus, trigeminal, spinal accessory nerve, abducent, occulomotor and glossopharyngeal in this order. Corticospinal tract signs were found in 2 of the 14 patients.
The disease may progress to patient's death in a period as short as 9 months or may have a slow evolution or may show plateaus. Post mortem examination of cases have found depletion of nerve cells in the nuclei of cranial nerves. The histologic alterations found in patient with Fazio–Londe disease were identical to those seen in infantile-onset spinal muscular atrophy.
Strength may improve with administration of cholinesterase inhibitors.
The following increase an individual's chances for acquiring VCD:
- Upper airway inflammation (allergic or non-allergic rhinitis, chronic sinusitis, recurrent upper respiratory infections)
- Gastroesophageal reflux disease
- Past traumatic event that involved breathing (e.g. near-drowning, suffocation)
- Severe emotional trauma or distress
- Female gender
- Playing a wind instrument
- Playing a competitive or elite sport
The cause of PVS is unknown; however, genetic factors and nutritional deficiencies may play a role. It is more common in women, particularly in middle age (peak age is over 50). In these patients, esophageal squamous cell carcinoma risk is increased; therefore, it is considered a premalignant process.
The condition is associated with koilonychia, glossitis, inflammation of the lips (cheilitis), and splenomegaly.
Esophageal web in Plummer-Vinson syndrome is found at upper end of esophagus(post cricoid region) and Schatzki ring may be found at the lower end of esophagus.
Diagnosing the congenital clasped thumb is difficult in the first three to four months of life, as it is normal when the thumb is clutched into the palm in these first months.
Diagnoses that cause the same flexion or adduction abnormalities of the thumb are:
- Congenital clasped thumb
- Congenital Trigger thumb (flexion of the interphalangeal joint) - Trigger finger
- Spasticity: overstimulation of muscles
Syndrome associated flexion-adduction of the thumb:
- Freeman-Sheldon syndrome (a congenital, heritable affection of the face, the hands, the feet and some joints)
- Distal arthrogryposis
- MASA syndrome
- X-linked hydrocephalus
- Adducted thumb syndrome
- Waardenburg syndrome
- Whistling face syndrome (Freeman-Sheldon syndrome)
- Digitotalar dysmorphism
- Multiple pterygium syndrome
The severe pain of HNA can be controlled with an anti-inflammatory drug such as prednisone, although it is unknown whether these anti-inflammatory drugs actually slow or stop the nerve degeneration process.
Nerve regeneration after an episode is normal, and in less severe cases a full recovery of the nerves and muscles can be expected. However, in a severe case permanent nerve damage may occur.
The exact cause of VCD is not known, and it is unlikely that a single underlying cause exists. Several contributing factors have been identified, which vary widely among VCD patients with different medical histories. Physical exercise (including, but not limited to, competitive athletics) is one of the major triggers for VCD episodes, leading to its frequent misdiagnosis as exercise-induced asthma. Other triggers include airborne pollutants and irritants such as smoke, dust, gases, soldering fumes, cleaning chemicals such as ammonia, perfumes, and other odours. Gastroesophageal reflux disease (GERD) and rhinosinusitis (inflammation of the paranasal sinuses and nasal cavity) may also play a role in inflaming the airway and leading to symptoms of VCD as discussed below.
Laryngeal hyperresponsiveness is considered the most likely physiologic cause of VCD, brought on by a range of different triggers that cause inflammation and/or irritation of the larynx (voice box). The glottic closure reflex (or laryngeal adductor reflex) serves to protect the airway, and it is possible that this reflex becomes hyperactive in some individuals, resulting in the paradoxical vocal fold closure seen in VCD. Two major causes of laryngeal inflammation and hyperresponsiveness are gastroesophageal reflux disease (GERD) and postnasal drip (associated with rhinosinusitis, allergic or nonallergic rhinitis, or a viral upper respiratory tract infection (URI)). Rhinosinusitis is very common among patients with VCD and for many patients, VCD symptoms are ameliorated when the rhinosinusitis is treated. GERD is also common among VCD patients, but only some experience an improvement in VCD symptoms when GERD is treated. Other causes of laryngeal hyperresponsiveness include inhalation of toxins and irritants, cold and dry air, episodic croup and laryngopharyngeal reflux (LPR).
VCD has long been strongly associated with a variety of psychological or psychogenic factors, including conversion disorder, major depression, obsessive-compulsive disorder, anxiety (especially in adolescents), stress (particularly stress relating to competitive sports), physical and sexual abuse, post-traumatic stress disorder, panic attacks, factitious disorder and adjustment disorder. It is important to note that anxiety and depression may occur in certain patients as a "result" of having VCD, rather than being the cause of it. Psychological factors are important precipitating factors for many patients with VCD; although exercise is also a major trigger for episodes of VCD, some patients experience VCD co-occurring with anxiety regardless of whether or not they are physically active at the time of the VCD/anxiety episode. Experiencing or witnessing a traumatic event related to breathing (such as a near-drowning or life-threatening asthma attack, for example), has also been identified as a risk factor for VCD.
VCD has also been associated with certain neurologic diseases including Arnold-Chiari malformation, cerebral aqueduct stenosis, cortical or upper motor neuron injury (such as that resulting from stroke), amyotrophic lateral sclerosis (ALS), parkinsonism syndromes and other movement disorders. However, this association occurs only rarely.
Voice disorders are medical conditions involving abnormal pitch, loudness or quality of the sound produced by the larynx and thereby affecting speech production. These include:
- Puberphonia
- Chorditis
- Vocal fold nodules
- Vocal fold cysts
- Vocal cord paresis
- Reinke's edema
- Spasmodic dysphonia
- Foreign accent syndrome
- Bogart–Bacall syndrome
- Laryngeal papillomatosis
- Laryngitis
Klumpke's paralysis is a form of paralysis involving the muscles of the forearm and hand, resulting from a brachial plexus injury in which the eighth cervical (C8) and first thoracic (T1) nerves are injured either before or after they have joined to form the lower trunk. The subsequent paralysis affects, principally, the intrinsic muscles of the hand (notably the interossei, thenar and hypothenar muscles) and the flexors of the wrist and fingers (notably flexor carpi ulnaris and ulnar half of the flexor digitorum profundus). Forearm pronators and wrist flexors may be involved, as may dilators of the iris and elevators of the eyelid (both of which may be seen in the case of associated Horner's syndrome). The classic presentation of Klumpke's palsy is the “claw hand” where the forearm is supinated and the wrist and fingers are flexed. If Horner syndrome is present, there is miosis (constriction of the pupils) in the affected eye.
The injury can result from difficulties in childbirth. The most common aetiological mechanism is caused by a traumatic vaginal delivery. The risk is greater when the mother is small or when the infant is of large weight. Risk of injury to the lower brachial plexus results from traction on an abducted arm, as with an infant being pulled from the birth canal by an extended arm above the head or with someone catching himself by a branch as he falls from a tree. Lower brachial plexus injuries should be distinguished from upper brachial plexus injuries, which can also result from birth trauma but give a different syndrome of weakness known as Erb's palsy.
Other trauma, such as motorcycle accidents, that have similar spinal cord injuries to C-8 & T-1, also show the same symptom's of Klumpke's paralysis.
In medicine, split hand syndrome is a neurological syndrome in which the hand muscles on the side of the thumb (lateral, thenar eminence) appear wasted, whereas the muscles on the side of the little finger (medial, hypothenar eminence) are spared. Anatomically, the abductor pollicis brevis and first dorsal interosseous muscle are more wasted than the abductor digiti minimi.
If lesions affecting the branches of the ulnar nerve that run to the wasted muscles are excluded, the lesion is almost sure to be located in the anterior horn of the spinal cord at the C8-T1 level. It has been proposed as a relatively specific sign for amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease). It can also occur in other disorders affecting the anterior horn, such as spinal muscular atrophy, Charcot-Marie-Tooth disease, poliomyelitis and progressive muscular atrophy. A slow onset and a lack of pain or sensorial symptoms are arguments against a lesion of the spinal root or plexus brachialis. To an extent, these features can also be seen in normal aging (although technically, the apparent muscle wasting is sarcopenia rather than atrophy).
The term split hand syndrome was first coined in 1994 by a researcher from the Cleveland Clinic called Asa J. Wilbourn.
The syndromes associated with central polydactyly are:
Bardet–Biedl syndrome,
Meckel syndrome,
Pallister–Hall syndrome,
Legius syndrome,
Holt–Oram syndrome,
Also, central polydactyly can be associated with syndactyly and cleft hand.
Other syndromes including polydactyly include acrocallosal syndrome, basal cell nevus syndrome, Biemond syndrome, ectrodactyly-ectodermal dysplasias-cleft lip/palate syndrome, mirror hand deformity, Mohr syndrome, oral-facial-digital syndrome, Rubinstein-Taybi syndrome, short rib polydactyly, and VATER association.
It can also occur with a triphalangeal thumb.
Other causes may include:
- Diabetes mellitus
- Facial nerve paralysis, sometimes bilateral, is a common manifestation of sarcoidosis of the nervous system, neurosarcoidosis.
- Bilateral facial nerve paralysis may occur in Guillain–Barré syndrome, an autoimmune condition of the peripheral nervous system.
- Moebius syndrome is a bilateral facial paralysis resulting from the underdevelopment of the VII cranial nerve (facial nerve), which is present at birth. The VI cranial nerve, which controls lateral eye movement, is also affected, so people with Moebius syndrome cannot form facial expression or move their eyes from side to side. Moebius syndrome is extremely rare, and its cause or causes are not known.
Although the exact cause of spasmodic dysphonia (i.e., laryngeal dystonia) is still unknown, epidemiological, genetic and neurological pathogenic factors have been proposed in recent research.
Risk factors include:
- Being female
- Being middle aged
- Having a family history of neurological diseases (e.g., tremor, dystonia, meningitis and other neurological diseases)
- Stressful events
- Upper respiratory tract infections
- Sinus and throat illnesses
- Heavy voice use
- Cervical dystonia
- Childhood measles or mumps
- Pregnancy and parturition
It has not been established whether these factors directly impact the development of spasmodic dysphonia (SD), however these factors could be used to identify possible and/or at-risk patients.
Researchers have also explored the possibility of a genetic component to SD. Three genes have been identified that may be related to the development of focal or segmental dystonia: TUBB4A, THAP1 and TOR1A genes. However, a recent study that examined the mutation of these three genes in 86 SD patients found that only 2.3% of the patients had novel/rare variants in THAP1 but none in TUBB4A and TOR1A. Evidence of a genetic contribution for dystonia involving the larynx is still weak and more research is needed in order to establish a causal relationship between SD and specific genes.
SD is a neurological disorder rather than a disorder of the larynx, and as in other forms of dystonia, interventions at the end organ (i.e., larynx) have not offered a definitive cure, only symptomatic relief. The pathophysiology underlying dystonia is becoming better understood as a result of discoveries about genetically based forms of the disorder, and this approach is the most promising avenue to a long-term solution.
SD is classified as a neurological disorder. However, because the voice can sound normal or near normal at times, some practitioners believe it to be psychogenic, that is, originating in the affected person's mind rather than from a physical cause. No medical organizations or groups take this position. A comparison of SD patients compared with vocal fold paralysis (VFP) patients found that 41.7% of the SD patients met the DSM-IV criteria for psychiatric comorbidity compared with 19.5% of the VFP group. However, another study found the opposite, with SD patients having significantly less psychiatric comorbidity compared to VFP patients: "The prevalence of major psychiatric cases varied considerably among the groups, from a low of seven percent (1/14) for spasmodic dysphonia, to 29.4 percent (5/17) for functional dysphonia, to a high of 63.6 percent (7/11) for vocal cord paralysis." A review in the journal Swiss Medicine Weekly states that "Psychogenic causes, a 'psychological disequilibrium', and an increased tension of the laryngeal muscles are presumed to be one end of the spectrum of possible factors leading to the development of the disorder". Alternatively, many investigators into the condition feel that the psychiatric comorbidity associated with voice disorders is a result of the social isolation and anxiety that patients with these conditions feel as a consequence of their difficulty with speech, as opposed to the cause of their dysphonia. The opinion that SD is psychogenic is not upheld by experts in the scientific community.
SD is formally classified as a movement disorder, one of the focal dystonias, and is also known as laryngeal dystonia.
In most cases, the cause of laryngeal paralysis is unknown or idiopathic. However, the disorder may arise secondary to general neuropathies, generalized neuromuscular diseases, muscular diseases, neoplasia either in the cervical (neck) region or the cranial mediastinum, or trauma. This acquired form occurs predominantly in middle-aged to old large breed or giant breed dogs such as the Labrador Retriever, golden retriever, Siberian Husky, Newfoundland, and St. Bernard. Usually these dogs are born with a normal larynx, but over time the nerves and muscles that control the laryngeal cartilages lose function.
Laryngeal paralysis may also be congenital in some breeds (e.g. Bouvier des Flandres, Dalmatians, Siberian huskies, and bulldogs), appearing in dogs between two and six months of age. Affected puppies may have difficulty swallowing and breathing, they may gag frequently, and their bark often sounds abnormal. In Dalmatians it is part of another condition called 'laryngeal paralysis-polyneuropathy complex.' Affected puppies should not be used for breeding.
Choke collars are not thought to be a significant risk factor for this disorder. However, after LP is diagnosed it is usually recommended to stop using a collar or anything else around the dog's neck and to switch to a harness instead.
Klumpke Palsy is listed as a 'rare disease' by the Office of Rare Diseases (ORD) of the National Institutes of Health (NIH). This means that Klumpke palsy, or a subtype of Klumpke palsy, affects fewer than 200,000 people in the US population.
Floppy trunk syndrome (abbreviated FTS, also known as flaccid trunk paralysis) is a condition that causes trunk paralysis in African bush elephants. Initially observed in 1989, the syndrome primarily affected bull elephants in several select regions in Zimbabwe. Afflicted elephants exhibit paralysis in their trunk, often having to adapt to feed. The loss of their trunks' prehensile abilities results in malnutrition and possibly death. The condition is a result of degeneration of nerves in the trunk, and is suggested to be a result of either heavy metals or toxins. There is debate over whether the condition is reversible.
Twenty to 27% of individuals with a laryngeal cleft also have a tracheoesophageal fistula and approximately 6% of individuals with a fistula also have a cleft. Other congenital anomalies commonly associated with laryngeal cleft are gastro-oesophageal reflux, tracheobronchomalacia, congenital heart defect, dextrocardia and situs inversus. Laryngeal cleft can also be a component of other genetic syndromes, including Pallister-Hall syndrome and G syndrome (Opitz-Friaz syndrome).
Periodic paralysis (also known as myoplegia paroxysmalis familiaris) is a group of rare genetic diseases that lead to weakness or paralysis from common triggers such as cold, heat, high carbohydrate meals, not eating, stress or excitement and physical activity of any kind. The underlying mechanism of these diseases are malfunctions in the ion channels in skeletal muscle cell membranes that allow electrically charged ions to leak in or out of the muscle cell, causing the cell to depolarize and become unable to move.
The symptoms of periodic paralysis can also be caused by hyperthyroidism, and are then labeled thyrotoxic periodic paralysis; however, if this is the underlying condition there are likely to be other characteristic manifestations, enabling a correct diagnosis.
Type VII of radial polydactyly is associated with several syndromes:
Holt–Oram syndrome, Fanconi anemia (aplastic anemia by the age of 6), Townes–Brocks syndrome, and Greig cephalopolysyndactyly (also known to occur with ulnar polydactyly).
Triplegia is a medical condition characterized by the paralysis of three limbs (Triplegia Muscle Anatomy) . A person with triplegia can be referred to as triplegic. While there is no typical pattern of involvement, it is usually associated with paralysis of both legs and one arm — but can also involve both arms and one leg. Triplegia can sometimes by considered a combination of hemiplegia (paralysis of arm and leg of one side of the body) overlaying diplegia (paralysis of both legs), or as quadriplegia (paralysis of four limbs) with less involvement in one extremity.
The condition is commonly associated with cerebral palsy, although conditions such as stroke can also lead to it. Triplegia has also been found to be due to an increase in intracranial pressure associated with hydrocephalus resulting from traumatic brain injury.
A similar condition is triparesis, in which the patient suffers from paresis in three limbs, meaning that the limbs are very weak, but not completely paralyzed.
In a case reported only due to its rarity, triplegia was reported following a tonsillectomy (surgical removal of the tonsils). An eight-year-old male patient was sent to Willard Parker Hospital on August 12, 1929 and had been diagnosed with poliomyelitis. After an unrelated, and routine, tonsillectomy there was complete flaccid paralysis and loss of feeling in both the legs, right arm, and muscles in the trunk.
Up to now, prevalence studies investigating rates of dysphonia on a large-scale level have been limited. According to a large sample of 55 million patients seeking health-care treatment in the United States, dysphonia can be found in approximately 1% of the population. Higher rates are reported in females and elderly adults, however, dysphonia can be found in both sexes and across age groups. It is proposed that higher rates in females are due to anatomical differences of the vocal mechanism.
Certain occupational groups may be more prone to developing voice disorders, namely dysphonia. Occupations that require extensive use of voice may be at a greater risk such as teachers and singers. However, the evidence is highly variable and must be interpreted carefully.