Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Marfan syndrome affects males and females equally, and the mutation shows no ethnic or geographical bias. Estimates indicate about 1 in 5,000 to 10,000 individuals have Marfan syndrome.
Prior to modern cardiovascular surgical techniques and drugs such as losartan, and metoprolol, the prognosis of those with Marfan syndrome was not good: a range of untreatable cardiovascular issues was common. Lifespan was reduced by at least a third, and many died in their teens and twenties due to cardiovascular problems. Today, cardiovascular symptoms of Marfan syndrome are still the most significant issues in diagnosis and management of the disease, but adequate prophylactic monitoring and prophylactic therapy offers something approaching a normal lifespan, and more manifestations of the disease are being discovered as more patients live longer. Women with Marfan syndrome live longer than men.
Camurati–Engelmann disease (CED) is a very rare autosomal dominant genetic disorder that causes characteristic anomalies in the skeleton.It is also known as progressive diaphyseal dysplasia. It is a form of dysplasia. Patients typically have heavily thickened bones, especially along the shafts of the long bones (called diaphyseal dysplasia). The skull bones may be thickened so that the passages through the skull that carry nerves and blood vessels become narrowed, possibly leading to sensory deficits, blindness, or deafness.
This disease often appears in childhood and is considered to be inherited, however some patients have no previous history of CED within their family. The disease is slowly progressive and, while there is no cure, there is treatment.
It is named for M. Camurati and G. Engelmann.
The prognosis for cystic fibrosis has improved due to earlier diagnosis through screening and better treatment and access to health care. In 1959, the median age of survival of children with CF in the United States was six months. In 2010, survival is estimated to be 37 years for women and 40 for men. In Canada, median survival increased from 24 years in 1982 to 47.7 in 2007.
In the US, of those with CF who are more than 18 years old as of 2009, 92% had graduated from high school, 67% had at least some college education, 15% were disabled, 9% were unemployed, 56% were single, and 39% were married or living with a partner.
Panayiotopoulos syndrome is probably genetically determined, though conventional genetic influences may be less important than other mechanisms. Usually, there is no family history of similar seizures, although siblings with Panayiotopoulos syndrome or Panayiotopoulos syndrome and rolandic epilepsy or, less common, Panayiotopoulos syndrome and idiopathic childhood occipital epilepsy of Gastaut have been reported. There is a high prevalence of febrile seizures (about 17%).
SCN1A mutations have been reported in a child and in 2 siblings with relatively early onset of seizures, prolonged time over which many seizures have occurred, and strong association of seizures with febrile precipitants even after the age of 5 years. However, no such mutations were found in another couple of siblings and many other cases with typical Panayiotopoulos syndrome. These data indicate that SCN1A mutations when found contribute to a more severe clinical phenotype of Panayiotopoulos syndrome.
Camurati–Engelmann disease is somewhat treatable. Glucocorticosteroids, which are anti-inflammatory and immunosuppressive agents, are used in some cases. This form of medication helps in bone strength, however can have multiple side effects. In several reports, successful treatment with glucocoricosteroids was described, as certain side effects can benefit a person with CED. This drug helps with pain and fatigue as well as some correction of radiographic abnormalities.
Alternative treatments such as massage, relaxation techniques (meditation, essential oils, spa baths, music therapy, etc.), gentle stretching, and especially heat therapy have been successfully used to an extent in conjunction with pain medications. A majority of CED patients require some form of analgesics, muscle relaxant, and/or sleep inducing medication to manage the pain, specifically if experiencing frequent or severe 'flare-ups' (e.g. during winter).
Infertility affects both men and women. At least 97% of men with cystic fibrosis are infertile, but not sterile and can have children with assisted reproductive techniques. The main cause of infertility in men with CF is congenital absence of the vas deferens (which normally connects the testes to the ejaculatory ducts of the penis), but potentially also by other mechanisms such as causing no sperm, abnormally shaped sperm, and few sperm with poor motility. Many men found to have congenital absence of the vas deferens during evaluation for infertility have a mild, previously undiagnosed form of CF. Around 20% of women with CF have fertility difficulties due to thickened cervical mucus or malnutrition. In severe cases, malnutrition disrupts ovulation and causes a lack of menstruation.
As noted above, a leukemoid reaction is typically a response to an underlying medical issue. Causes of leukemoid reactions include:
- Severe hemorrhage (retroperitoneal hemorrhage)
- Drugs
- Use of sulfa drugs
- Use of dapsone
- Use of glucocorticoids
- Use of G-CSF or related growth factors
- All-trans retinoic acid (ATRA)
- Ethylene glycol intoxication
- Infections
- Clostridium difficile
- Tuberculosis
- Pertussis
- Infectious mononucleosis (lymphocyte predominant)
- Visceral larva migrans (eosinophil predominant)
- Asplenia
- Diabetic ketoacidosis
- Organ necrosis
- Hepatic necrosis
- Ischemic colitis
- As a feature of trisomy 21 in infancy (incidence of ~10%)
- As a paraneoplastic phenomenon (rare)
Panayiotopoulos syndrome (named after C. P. Panayiotopoulos) is a common idiopathic childhood-related seizure disorder that occurs exclusively in otherwise normal children (idiopathic epilepsy) and manifests mainly with autonomic epileptic seizures and autonomic status epilepticus. An expert consensus has defined Panayiotopoulos syndrome as "a benign age-related focal seizure disorder occurring in early and mid-childhood. It is characterized by seizures, often prolonged, with predominantly autonomic symptoms, and by an EEG [electroencephalogram] that shows shifting and/or multiple foci, often with occipital predominance."
The term leukemoid reaction describes an increased
white blood cell count, or leukocytosis, which is a physiological response to stress or infection (as opposed to a primary blood malignancy, such as leukemia). It often describes the presence of immature cells such as myeloblasts or red blood cells with nuclei in the peripheral blood.
It may be lymphoid or myeloid.
Environmental factors refer for example to maternal smoking and the maternal exposure to amine-containing drugs. Several research groups have found evidence that these environmental factors are responsible for an increase in the risk of craniosynostosis, likely through effects on fibroblast growth factor receptor genes.
On the other hand, a recent evaluation of valproic acid (an anti-epilepticum), which has been implicated as a causative agent, has shown no association with craniosynostosis.
Certain medication (like amine-containing drugs) can increase the risk of craniosynostosis when taken during pregnancy, these are so-called teratogenic factors.
Biomechanical factors include fetal head constraint during pregnancy. It has been found by Jacob et al. that constraint inside the womb is associated with decreased expression of Indian Hedgehog protein and noggin. These last two are both important factors influencing bone development.
Neutrophilia (also called neutrophil leukocytosis or occasionally neutrocytosis) is leukocytosis of neutrophils, that is, a high number of neutrophil granulocytes in the blood.
Neutrophils are the primary white blood cells that respond to a bacterial infection, so the most common cause of neutrophilia is a bacterial infection, especially pyogenic infections.
Neutrophils are also increased in any acute inflammation, so will be raised after a heart attack, other infarct or burns.
Some drugs, such as prednisone, have the same effect as cortisol and adrenaline (epinephrine), causing marginated neutrophils to enter the blood stream. Nervousness will very slightly raise the neutrophil count because of this effect.
A neutrophilia might also be the result of a malignancy. Chronic myelogenous leukemia (CML or chronic myeloid leukaemia) is a disease where the blood cells proliferate out of control. These cells may be neutrophils. Neutrophilia can also be caused by appendicitis and splenectomy.
Primary neutrophilia can additionally be a result of Leukocyte adhesion deficiency.
A Chance fracture is a flexion injury of the spine, first described by G. Q. Chance in 1948. It consists of a tension-failure injury to the anterior column of the vertebral body and a transverse fracture through the posterior elements of the vertebra and the posterior portion of the vertebral body. It is caused by violent forward flexion, causing distraction injury to the posterior elements.
The most common site at which Chance fractures occur is the thoracolumbar junction (T12-L2) and midlumbar region in pediatric population. This fracture initially became known as a "seat belt injury" due to its association with the sudden forward flexion that occurs when one is involved in a head-on automobile collision while being restrained by a lap belt. With the advent of both lap and shoulder belts in the 1980s, Chance fractures have become less common especially now that lap-belt-only seat belts have been almost entirely phased out.
Up to 50% of Chance fractures have associated intraabdominal injuries. Injuries associated with Chance fractures include contusions and/or lacerations of the pancreas, duodenum, and mesentery.
Because of the high frequency of associated injuries, clinicians are taught to suspect that a patient has multiple severe injuries if a sternal fracture is present. Sternal fracture is commonly associated with injuries to the heart and lungs; if a person is injured with enough force to fracture the sternum, injuries such as myocardial and pulmonary contusions are likely. Other associated injuries that may occur include damage to blood vessels in the chest, myocardial rupture, head and abdominal injuries, flail chest, and vertebral fracture. Sternal fractures may also accompany rib fractures and are high-energy enough injuries to cause bronchial tears (ruptures of the bronchioles). They may hinder breathing. Due to the associated injuries, the mortality rate for people with sternal fracture is high, at an estimated 25–45%. However, when sternal fractures occur in isolation, their outcome is very good.
There is controversy over the question of whether the presence of sternal fracture is an indication of cardiac injuries.
An alveolar macrophage (or dust cell) is a type of macrophage found in the pulmonary alveolus, near the pneumocytes, but separated from the wall.
Activity of the alveolar macrophage is relatively high, because they are located at one of the major boundaries between the body and the outside world. They are responsible for removing particles such as dust or microorganisms from the respiratory surfaces.
Alveolar macrophages are frequently seen to contain granules of exogenous material such as particulate carbon that they have picked up from respiratory surfaces. Such black granules may be especially common in smoker's lungs or long-term city dwellers.
Inhaled air may contain particles or organisms which would be pathogenic. The respiratory pathway is a prime site for exposure to pathogens and toxic substances. The respiratory tree, comprising the larynx, trachea, and bronchioles, is lined by ciliated epithelia cells that are continually exposed to harmful matter. When these offensive agents infiltrate the superficial barriers, the body's immune system responds in an orchestrated defense involving a litany of specialized cells which target the threat, neutralize it, and clean up the remnants of the battle.
Deep within the lungs exists its constituent alveoli sacs, the sites responsible for the uptake of oxygen and excretion of carbon dioxide. There are three major alveolar cell types in the alveolar wall (pneumocytes):
- Type I pneumocyte (Squamous Alveolar) cells that form the structure of an alveolar wall.
- Type II pneumocyte (Great Alveolar) cells that secrete pulmonary surfactant to lower the surface tension of water and allows the membrane to separate, thereby increasing the capability to exchange gases. Surfactant is continuously released by exocytosis. It forms an underlying aqueous protein-containing hypophase and an overlying phospholipid film composed primarily of dipalmitoyl phosphatidylcholine.
- Macrophages that destroy foreign material, such as bacteria.
Type 1 and type 2 pneumocytes. Type 1 pneumocytes (or membranous pneumocytes) form the structure of the alveolus and are responsible for the gas exchange in the alveolus. Type 1 pneumocytes are squamous epithelial cells which are characterized by a superficial layer consisting of large, thin, scale-like cells; they also cover 95% of the alveolar surface, although they are only half as numerous as Type 2 pneumocytes. Type 2 pneumocytes are important in that they can proliferate and differentiate into type 1 pneumocytes, which cannot replicate and are susceptible to a vast numbers of toxic insults. Type 2 pneumocytes are also important because they secrete pulmonary surfactant(PS), which consists 80–90% of phospholipids [(phosophatidylcholine(PC), phosphatidyglycerol(PG), phosphaditylinositol (PI)] and 5-10% of surfactant proteins (SP-A, SP-B, SP-C, AND SP-D). PS is synthesized as lamellar bodies, which are structures consisting of closely packed bilayers that are secreted and then undergo transformation into a morphological form called tubular myelin. PS plays an important role in maintaining normal respiratory mechanics by reducing alveolar surface tension. By lowering alveolar surface tension, PS reduces the energy required to inflate the lungs, and reduces the likelihood of alveolar collapse during expiration. Loosely attached to these alveoli sacs are the alveolar macrophages that protect the lungs from a broad array of microbes and aerosols by devouring and ingesting them through phagocytosis.
Alveolar macrophages are phagocytes that play a critical role in homeostasis, host defense, the response to foreign substances, and tissue remodeling. Since alveolar macrophages are pivotal regulators of local immunological homeostasis, their population density is decisive for the many processes of immunity in the lungs. They are highly adaptive components of the innate immune system and can be specifically modified to whatever functions needed depending on their state of differentiation and micro-environmental factors encountered. Alveolar macrophages release numerous secretory products and interact with other cells and molecules through the expression of several surface receptors. Alveolar macrophages are also involved in the phagocytosis of apoptotic and necrotic cells that have undergone cell-death. They must be selective of the material that is phagocytized because normal cells and structures of the body must not be compromised. To combat infection, the phagocytes of the innate immune system facilitates many pattern recognition receptors (PRR) to help recognize pathogen-associated molecular patterns (PAMPs) on the surface of pathogenic microorganisms. PAMPs all have the common features of being unique to a group of pathogens but invariant in their basic structure; and are essential for pathogenicity(ability of an organism to produce an infectious disease in another organism). Proteins involved in microbial pattern recognition include mannose receptor, complement receptors, DC-SIGN, Toll-like receptors(TLRs), the scavenger receptor, CD14, and Mac-1. PRRs can be divided into three classes:
1. signaling PRRs that activate gene transcriptional mechanisms that lead to cellular activation,
2. endocytic PRRs that function in pathogen binding and phagocytosis, and
3. secreted PRRs that usually function as opsonins or activators of complement.
The recognition and clearance of invading microorganisms occurs through both opsonin-dependent and opsonin–independent pathways. The molecular mechanisms facilitating opsonin-dependent phagocytosis are different for specific opsonin/receptor pairs. For example, phagocytosis of IgG-opsonized pathogens occurs through the Fcγ receptors (FcγR), and involves phagocyte extensions around the microbe, resulting in the production of pro-inflammatory mediators. Conversely, complement receptor-mediated pathogen ingestion occurs without observable membrane extensions (particles just sink into the cell) and does not generally results in an inflammatory mediator response.
Following internalization, the microbe is enclosed in a vesicular phagosome which then undergoes fusion with primary or secondary lysosomes, forming a phagolysosome. There are various mechanisms that lead to intracellular killing; there are oxidative processes, and others independent of the oxidative metabolism. The former involves the activation of membrane enzyme systems that lead to a stimulation of oxygen uptake (known as the respiratory burst), and its reduction to reactive oxygen intermediates (ROIs), molecular species that are highly toxic for microorganisms. The enzyme responsible for the elicitation of the respiratory burst is known as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which is composed of five subunits. One component is a membrane cytochrome made up of two protein subunits, gp91phox and p22phox; the remaining three components are cytosolic-derived proteins: p40phox, p47phox, and p67phox. NADPH oxidase exists in the cytosol of the AM when in a quiescent state; but upon activation, two of its cytosolic components, p47phox and p67phox, have their tyrosine and serine residues phosphorylated, which are then able to mediate translocation of NADPHox to the cytochrome component, gp91phox/p22phox, on the plasma membrane via cytoskeletal elements.
Compared to other phagocytes, the respiratory burst in AM is of a greater magnitude. Oxygen-independent microbicidal mechanisms are based on the production of acid, on the secretion of lysozymes, on iron-binding proteins, and on the synthesis of toxic cationic polypeptides. Macrophages possess a repertoire of antimicrobial molecules packaged within their granules and lysosomes. These organelles contain a plethora of degradative enzymes and antimicrobial peptides that are released into the phagolysosome, such as proteases, nucleases, phosphatases, esterases, lipases, and highly basic peptides. Moreover, macrophages possess a number of nutrient deprivation mechanisms that are used to starve phagocytosed pathogens of essential micronutrients. Certain microorganisms have evolved countermeasures which enable them to evade being destroyed by phagocytes. Although lysosomal-mediated degradation is an efficient means by which to neutralize an infection and prevent colonization, several pathogens parasitize macrophages, exploiting them as a host cell for growth, maintenance and replication. Parasites like Toxoplasma gondii and mycobacteria are able to prevent fusion of phagosomes with lysosomes, thus escaping the harmful action of lysosomal hydrolases. Others avoid lysosomes by leaving the phagocytic vacuole, to reach the cytosolic matrix where their development is unhindered. In these instances, macrophages may be triggered to actively destroy phagocytosed microorganisms by producing a number of highly toxic molecules and inducing deprivational mechanism to starve it. Finally, some microbes have enzymes to detoxify oxygen metabolites formed during the respiratory burst.
When insufficient to ward off the threat, alveolar macrophages can release proinflammatory cytokines and chemokines to call forth a highly developed network of defensive phagocytic cells responsible for the adaptive immune response.
The lungs are especially sensitive and prone to damage, thus to avoid collateral damage to type 1 and type II pneumocytes, alveolar macrophages are kept in a quiescent state, producing little inflammatory cytokines and displaying little phagocytic activity, as evidenced by downregulated expression of the phagocytic receptor Macrophage 1 antigen (Mac-1). AMs actively suppress the induction of two of the immunity systems of the body: the adaptive immunity and humoral immunity. The adaptive immunity is suppressed through AM’s effects on interstitial dendritic cells, B-cells and T-cells, as these cells are less selective of what they destroy, and often cause unnecessary damage to normal cells. To prevent uncontrolled inflammation in the lower respiratory tract, alveolar macrophages secrete nitric oxide, prostaglandins, interleukin-4 and -10(IL-4, IL-10), and transforming growth factor-β (TGF-β).
According to 2007 statistics from the World Health Organization (WHO), Australia has the third-highest prevalence of overweight adults in the English-speaking world.Obesity in Australia is an "epidemic" with "increasing frequency." "The Medical Journal of Australia" found that obesity in Australia more than doubled in the two decades preceding 2003, and the unprecedented rise in obesity has been compared to the same health crisis in America. The rise in obesity has been attributed to poor eating habits in the country closely related to the availability of fast food since the 1970s, sedentary lifestyles and a decrease in the labour workforce.
Research into AM functionality has been on the rise since AMs are one of the first lines of a defense against invasive pathogens. One of the most prominent fields is investigating liposomes as deliverers of antibiotics for treatment of respiratory intracellular infections. Intracellular parasites, such as M. tuberculosis, C. pneumoniae, L. monocytogenes, L. pneumophila, and F. tularensis, (to name a few) are taken up by AMs via phagocytosis, but are resistant to the biocidal mechanisms of AMs and can survive intracellularly, thus inducing severe respiratory infections. Pulmonary tuberculosis is caused by M. tuberculosis, and is now a major infectious disease worldwide and its incidence is increasing, especially in association with the AIDS pandemic. For sterilization of intracellular parasites in AMs, antibiotics are normally given orally or intravenously, but much of the antibiotics disperse to many different tissues, diminishing its effectiveness. Pulmonary administration of mannosylated liposomes is a much more direct, efficient route in targeting AMs; it enhances antimicrobial effect, reduces the dosage needed, and avoids unnecessary distribution to the blood. Since mannose receptors are exclusively expressed on the surface of AM, mannosylation of liposomes is an appealing approach to cell-selective targeting to AM. The efficacy of pulmonary administration of ciprofloxacin (CPFX) incorporated into mannosylated liposomes (mannosylated CPFX-lipososomes) was examined in rats, and determined to be an efficient means to target AMs.
X-rays of the chest are taken in people with chest trauma and symptoms of sternal fractures, and these may be followed by CT scanning. Since X-rays taken from the front may miss the injury, they are taken from the side as well.
Management involves treating associated injuries; people with sternal fractures but no other injuries do not need to be hospitalized. However, because it is common for cardiac injuries to accompany sternal fracture, heart function is monitored with electrocardiogram. Fractures that are very painful or extremely out of place can be operated on to fix the bone fragments into place, but in most cases treatment consists mainly of reducing pain and limiting movement. The fracture may interfere with breathing, requiring tracheal intubation and mechanical ventilation.
Patients who have experienced a pathologic fracture will be investigated for the cause of the underlying disease, if it is unknown. Treatment of any underlying disease, such as chemotherapy if indicated for bone cancer, may help to improve the pain of a sternal fracture.
1 in 4 children are overweight (25%) and 2 in 3 adults are overweight (63%)
Chronic arsenic poisoning results from drinking contaminated well water over a long period of time. Many aquifers contain high concentration of arsenic salts. The World Health Organization (WHO) recommends a limit of 0.01 mg/L (10 parts per billion) of arsenic in drinking water. This recommendation was established based on the limit of detection for most laboratories' testing equipment at the time of publication of the WHO water quality guidelines. More recent findings show that consumption of water with levels as low as 0.00017 mg/L (0.17 parts per billion) over long periods of time can lead to arsenicosis.
From a 1988 study in China, the US protection agency quantified the lifetime exposure of arsenic in drinking water at concentrations of 0.0017 mg/L, 0.00017 mg/L, and 0.000017 mg/L are associated with a lifetime skin cancer risk of 1 in 10,000, 1 in 100,000, and 1 in 1,000,000 respectively. WHO asserts that a level of 0.01 mg/L poses a risk of 6 in 10000 chance of lifetime skin cancer risk and contends that this level of risk is acceptable.
One of the worst incidents of arsenic poisoning via well water occurred in Bangladesh, which the World Health Organization called the "largest mass poisoning of a population in history."
Mining techniques such as hydraulic fracturing may mobilize arsenic in groundwater and aquifers due to enhanced methane transport and resulting changes in redox conditions, and inject fluid containing additional arsenic.
As of 2009, loiasis is endemic to 11 countries, all in western or central Africa, and an estimated 12–13 million people have the disease. The highest incidence is seen in Cameroon, Republic of the Congo, Democratic Republic of Congo, Central African Republic, Nigeria, Gabon, and Equatorial Guinea. The rates of "Loa loa" infection are lower but it is still present in and Angola, Benin, Chad and Uganda. The disease was once endemic to the western African countries of Ghana, Guinea, Guinea Bissau, Ivory Coast and Mali but has since disappeared.
Throughout "Loa loa"-endemic regions, infection rates vary from 9 to 70 percent of the population. Areas at high risk of severe adverse reactions to mass treatment (with Ivermectin) are at present determined by the prevalence in a population of >20% microfilaremia, which has been recently shown in eastern Cameroon (2007 study), for example, among other locales in the region.
Endemicity is closely linked to the habitats of the two known human loiasis vectors, "Chrysops dimidiata" and "C. silicea".
Cases have been reported on occasion in the United States but are restricted to travelers who have returned from endemic regions.
In the 1990s, the only method of determining "Loa loa" intensity was with microscopic examination of standardized blood smears, which is not practical in endemic regions. Because mass diagnostic methods were not available, complications started to surface once mass ivermectin treatment programs started being carried out for onchocerciasis, another filariasis. Ivermectin, a microfilaricidal drug, may be contraindicated in patients who are co-infected with loiasis and have associated high microfilarial loads. The theory is that the killing of massive numbers of microfilaria, some of which may be near the ocular and brain region, can lead to encephalopathy. Indeed, cases of this have been documented so frequently over the last decade that a term has been given for this set of complication: neurologic serious adverse events (SAEs).
Advanced diagnostic methods have been developed since the appearance the SAEs, but more specific diagnostic tests that have been or are currently being development (see: Diagnostics) must to be supported and distributed if adequate loiasis surveillance is to be achieved.
There is much overlap between the endemicity of the two distinct filariases, which complicates mass treatment programs for onchocerciasis and necessitates the development of greater diagnostics for loiasis.
In Central and West Africa, initiatives to control onchocerciasis involve mass treatment with Ivermectin. However, these regions typically have high rates of co-infection with both "L. loa" and "O. volvulus", and mass treatment with Ivermectin can have severe adverse effects (SAE). These include hemorrhage of the conjunctiva and retina, heamaturia, and other encephalopathies that are all attributed to the initial L. loa microfilarial load in the patient prior to treatment. Studies have sought to delineate the sequence of events following Ivermectin treatment that lead to neurologic SAE and sometimes death, while also trying to understand the mechanisms of adverse reactions to develop more appropriate treatments.
In a study looking at mass Ivermectin treatment in Cameroon, one of the greatest endemic regions for both onchocerciasis and loiasis, a sequence of events in the clinical manifestation of adverse effects was outlined.
It was noted that the patients used in this study had a "L. loa" microfilarial load of greater than 3,000 per ml of blood.
Within 12–24 hours post-Ivermectin treatment (D1), individuals complained of fatigue, anorexia, and headache, joint and lumbar pain—a bent forward walk was characteristic during this initial stage accompanied by fever. Stomach pain and diarrhea were also reported in several individuals.
By day 2 (D2), many patients experienced confusion, agitation, dysarthria, mutism and incontinence. Some cases of coma were reported as early as D2. The severity of adverse effects increased with higher microfilarial loads. Hemorrhaging of the eye, particularly the retinal and conjunctiva regions, is another common sign associated with SAE of Ivermectin treatment in patients with "L. loa" infections and is observed between D2 and D5 post-treatment. This can be visible for up to 5 weeks following treatment and has increased severity with higher microfilarial loads.
Haematuria and proteinuria have also been observed following Ivermectin treatment, but this is common when using Ivermectin to treat onchocerciasis. The effect is exacerbated when there are high "L. loa" microfilarial loads however, and microfilariae can be observed in the urine occasionally. Generally, patients recovered from SAE within 6–7 months post-Ivermectin treatment; however, when their complications were unmanaged and patients were left bed-ridden, death resulted due to gastrointestinal bleeding, septic shock, and large abscesses.
Mechanisms for SAE have been proposed. Though microfilarial load is a major risk factor to post-Ivermectin SAE, three main hypotheses have been proposed for the mechanisms.
The first mechanism suggests that Ivermectin causes immobility in microfilariae, which then obstructs microcirculation in cerebral regions. This is supported by the retinal hemorrhaging seen in some patients, and is possibly responsible for the neurologic SAE reported.
The second hypothesis suggests that microfilariae may try to escape drug treatment by migrating to brain capillaries and further into brain tissue; this is supported by pathology reports demonstrating a microfilarial presence in brain tissue post-Ivermectin treatment.
Lastly, the third hypothesis attributes hypersensitivity and inflammation at the cerebral level to post-Ivermectin treatment complications, and perhaps the release of bacteria from L. loa after treatment to SAE. This has been observed with the bacteria "Wolbachia" that live with "O. volvulus".
More research into the mechanisms of post-Ivermectin treatment SAE is needed to develop drugs that are appropriate for individuals suffering from multiple parasitic infections.
One drug that has been proposed for the treatment of onchocerciasis is doxycycline. This drug has been shown to be effective in killing both the adult worm of "O. volvulus" and "Wolbachia", the bacteria believed to play a major role in the onset of onchocerciasis, while having no effect on the microfilariae of "L. loa". In a study done at 5 different co-endemic regions for onchocerciasis and loiasis, doxycycline was shown to be effective in treating over 12,000 individuals infected with both parasites with minimal complications. Drawbacks to using Doxycycline include bacterial resistance and patient compliance because of a longer treatment regimen and emergence of doxycycline-resistant "Wolbachia". However, in the study over 97% of the patients complied with treatment, so it does pose as a promising treatment for onchocerciasis, while avoiding complications associated with L. loa co-infections.
Human loiasis geographical distribution is restricted to the rain forest and swamp forest areas of West Africa, being especially common in Cameroon and on the Ogooué River. Humans are the only known natural reservoir. It is estimated that over 10 million humans are infected with "Loa loa" larvae.
An area of tremendous concern regarding loiasis is its co-endemicity with onchocerciasis in certain areas of west and central Africa, as mass ivermectin treatment of onchocerciasis can lead to serious adverse events (SAEs) in patients who have high "Loa loa" microfilarial densities, or loads. This fact necessitates the development of more specific diagnostics tests for "Loa loa" so that areas and individuals at a higher risk for neurologic consequences can be identified prior to microfilaricidal treatment. Additionally, the treatment of choice for loiasis, diethylcarbamazine, can lead to serious complications in and of itself when administered in standard doses to patients with high "Loa loa" microfilarial loads.
Organic arsenic is less harmful than inorganic arsenic. Seafood is a common source of the less toxic organic arsenic in the form of arsenobetaine. The arsenic reported in 2012 in fruit juice and rice by "Consumer Reports" was primarily inorganic arsenic.
Diethylcarbamazine has been shown as an effective prophylaxis for "Loa loa" infection.
A study of Peace Corps volunteers in the highly Loa—endemic Gabon, for example, had the following results: 6 of 20 individuals in a placebo group contracted the disease, compared to 0 of 16 in the DEC-treated group. Seropositivity for antifilarial IgG antibody was also much higher in the placebo group. The recommended prophylactic dose is 300 mg DEC given orally once weekly. The only associated symptom in the Peace Corps study was nausea.
Researchers believe that geo-mapping of appropriate habitat and human settlement patterns may, with the use of predictor variables such as forest, land cover, rainfall, temperature, and soil type, allow for estimation of Loa loa transmission in the absence of point-of-care diagnostic tests. In addition to geo-mapping and chemoprophylaxis, the same preventative strategies used for malaria should be undertaken to avoid contraction of loiasis. Specifically, DEET-containing insect repellent, permethrin-soaked clothing, and thick, long-sleeved and long-legged clothing ought to be worn to decrease susceptibility to the bite of the mango or deer fly vector. Because the vector is day-biting, mosquito (bed) nets do not increase protection against loiasis.
Vector elimination strategies are an interesting consideration. It has been shown that the "Chrysops" vector has a limited flying range, but vector elimination efforts are not common, likely because the insects bite outdoors and have a diverse, if not long, range, living in the forest and biting in the open, as mentioned in the vector section.
No vaccine has been developed for loiasis and there is little report on this possibility.