Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The evidence linking vitamin C supplements with an increased rate of kidney stones is inconclusive. The excess dietary intake of vitamin C might increase the risk of calcium oxalate stone formation, in practice this is rarely encountered. The link between vitamin D intake and kidney stones is also tenuous. Excessive vitamin D supplementation may increase the risk of stone formation by increasing the intestinal absorption of calcium; correction of a deficiency does not.
Calcium is one component of the most common type of human kidney stones, calcium oxalate. Some studies suggest people who take calcium or vitamin D as a dietary supplement have a higher risk of developing kidney stones. In the United States, kidney stone formation was used as an indicator of excess calcium intake by the Reference Daily Intake committee for calcium in adults.
In the early 1990s, a study conducted for the Women's Health Initiative in the US found that postmenopausal women who consumed 1000 mg of supplemental calcium and 400 international units of vitamin D per day for seven years had a 17% higher risk of developing kidney stones than subjects taking a placebo. The Nurses' Health Study also showed an association between supplemental calcium intake and kidney stone formation.
Unlike supplemental calcium, high intakes of dietary calcium do not appear to cause kidney stones and may actually protect against their development. This is perhaps related to the role of calcium in binding ingested oxalate in the gastrointestinal tract. As the amount of calcium intake decreases, the amount of oxalate available for absorption into the bloodstream increases; this oxalate is then excreted in greater amounts into the urine by the kidneys. In the urine, oxalate is a very strong promoter of calcium oxalate precipitation—about 15 times stronger than calcium.
A 2004 study found that diets low in calcium are associated with a higher overall risk for kidney stone formation. For most individuals, other risk factors for kidney stones, such as high intakes of dietary oxalates and low fluid intake, play a greater role than calcium intake.
There is a genetic predisposition, first-degree relatives have a great increase in the chance of VUR. The gene frequency is estimated to be 1:600. The American Academy of Pediatrics recommends that children from 2 to 24 months presenting with a UTI should be investigated for VUR.
Male gender, proteinuria (especially > 2 g/day), hypertension, smoking, hyperlipidemia, older age, familial disease and elevated creatinine concentrations are markers of a poor outcome. Frank hematuria has shown discordant results with most studies showing a better prognosis, perhaps related to the early diagnosis, except for one group which reported a poorer prognosis. Proteinuria and hypertension are the most powerful prognostic factors in this group.
There are certain other features on kidney biopsy such as interstitial scarring which are associated with a poor prognosis. ACE gene polymorphism has been recently shown to have an impact with the DD genotype associated more commonly with progression to kidney failure.
In the general population, the frequency of medullary sponge kidney disease is reported to be 0.02–0.005%; that is, 1 in 5000 to 1 in 20,000. The frequency of medullary sponge kidney has been reported by various authors to be 1221% in patients with kidney stones. The disease is bilateral in 70% of cases.
Despite expensive treatments, lupus nephritis remains a major cause of morbidity and mortality in people with relapsing or refractory lupus nephritis.
The long-term use of lithium, a medication commonly used to treat bipolar disorder and schizoaffective disorders, is known to cause nephropathy.
Nephrotic syndrome can affect any age, although it is mainly found in adults with a ratio of adults to children of 26 to 1.
The syndrome presents in different ways in the two groups: the most frequent glomerulopathy in children is minimal change disease (66% of cases), followed by focal segmental glomerulosclerosis (8%) and mesangiocapillary glomerulonephritis (6%). In adults the most common disease is mesangiocapillary glomerulonephritis (30-40%), followed by focal and segmental glomeruloesclerosis (15-25%) and minimal change disease (20%). The latter usually presents as secondary and not primary as occurs in children. Its main cause is diabetic nephropathy. It usually presents in a patient’s 40s or 50s.
Of the glomerulonephritis cases approximately 60% to 80% are primary, while the remainder are secondary.
There are also differences in epidemiology between the sexes, the disease is more common in men than in women by a ratio of 2 to 1.
The epidemiological data also reveals information regarding the most common way that symptoms develop in patients with nephrotic syndrome: spontaneous remission occurs in up to 20% or 30% of cases during the first year of the illness. However, this improvement is not definitive as some 50% to 60% of patients die and / or develop chronic renal failure 6 to 14 years after this remission. On the other hand, between 10% and 20% of patients have continuous episodes of remissions and relapses without dying or jeopardizing their kidney. The main causes of death are cardiovascular, as a result of the chronicity of the syndrome, and thromboembolic accidents.
Complications associated with medullary sponge kidney include the following:
- Kidney stones
- Urinary tract infection (UTI)
- Blood in the urine
- Distal renal tubular acidosis (Type 1 RTA)
- Chronic kidney disease (rarely)
- Marked chronic pain
The prognosis for nephrotic syndrome under treatment is generally good although this depends on the underlying cause, the age of the patient and their response to treatment. It is usually good in children, because minimal change disease responds very well to steroids and does not cause chronic renal failure. Any relapses that occur become less frequent over time; the opposite occurs with mesangiocapillary glomerulonephritis, in which the kidney fails within three years of the disease developing, making dialysis necessary and subsequent kidney transplant. In addition children under the age of 5 generally have a poorer prognosis than prepubescents, as do adults older than 30 years of age as they have a greater risk of kidney failure.
Other causes such as focal segmental glomerulosclerosis frequently lead to end stage renal disease. Factors associated with a poorer prognosis in these cases include level of proteinuria, blood pressure control and kidney function (GFR).
Without treatment nephrotic syndrome has a very bad prognosis especially "rapidly progressing glomerulonephritis", which leads to acute kidney failure after a few months.
This requires drainage, best performed by ureteral stent placement or nephrostomy.
Inflammation of or injury to the glomeruli can cause leakage of red blood cells, resulting in misshapen cells and red blood cell casts in the urine. Glomerular bleeding is frequently accompanied by proteinuria, or leakage of protein into the urine.
Common causes include
- IgA nephropathy
- Hereditary nephritis (Alport's disease)
- Benign familiar hematuria
- Glomerulonephritis–a group of inflammatory diseases of the glomeruli, leading to hematuria, hypertension, and peripheral edema
The causes of diseases of the body are common to the urinary tract. Structural and or traumatic change can lead to hemorrhage, functional blockage or inflammation. Colonisation by bacteria, protozoa or fungi can cause infection. Uncontrolled cell growth can cause neoplasia.
For example:
- Urinary tract infections (UTIs), interstitial cystitis
- incontinence (involuntary loss of urine), benign prostatic hyperplasia (where the prostate overgrows), prostatitis (inflammation of the prostate).
- Urinary retention, which is a common complication of benign prostatic hyperplasia (BPH), though it can also be caused by other types of urinary tract obstruction, nerve dysfunction, tethered spinal cord syndrome, constipation, infection and certain medications.
- Transitional cell carcinoma (bladder cancer), renal cell carcinoma (kidney cancer), and prostate cancer are examples of neoplasms affecting the urinary system.
- Urinary tract obstruction
The term "uropathy" refers to a disease of the urinary tract, while "nephropathy" refers to a disease of the kidney.
In one review, over half of individuals with shunt nephritis made a complete recovery. An additional 40% of individuals had persistent urine abnormalities or end-stage renal disease. Death occurred in 9%.
Greater than 50% of cases of visible hematuria in children have an identifiable cause. Common causes of visible hematuria in pediatric populations are:
- urinary tract infection
- perineal or urethral irritation
- congenital abnormalities–
- Non-vascular—ureteropelvic junction obstruction, posterior urethral valves, urethral prolapse, urethral diverticula, multicystic dysplastic kidney
- Vascular—arteriovenous malformations, hereditary hemorrhagic telangiectasias, renal vascular thromboses
- trauma
- acute nephritis—characterized by visible hematuria, white blood cells in the urine, and a transient decline in renal function, commonly caused by medications
- coagulopathy
- kidney stones
- IgA nephropathy–suspected in a child with dark urine and recent upper respiratory infection
- Post-streptococcal glomerulonephritis–suspected in a child with dark brown urine following recent streptoccocal pharyngitis or impetigo
Renal failure is defined by functional impairment of the kidney. Renal failure can be acute or chronic, and can be further broken down into categories of pre-renal, intrinsic renal and post-renal.
Pre-renal failure refers to impairment of supply of blood to the functional nephrons including renal artery stenosis. Intrinsic renal diseases are the classic diseases of the kidney including drug toxicity and nephritis. Post-renal failure is outlet obstruction after the kidney, such as a kidney stone or prostatic bladder outlet obstruction.
Renal failure may require medication, dietary and lifestyle modification and dialysis.
Primary renal cell carcinomas as well as metastatic cancers can affect the kidney.
Common causes include infection, or reaction to medication such as an analgesic or antibiotics such as methicillin (meticillin). Reaction to medications causes 71% to 92% of cases.
This disease is also caused by other diseases and toxins that damage the kidney. Both acute and chronic tubulointerstitial nephritis can be caused by a bacterial infection in the kidneys known as pyelonephritis, but the most common cause is by an adverse reaction to a drug. The drugs that are known to cause this sort of reaction are antibiotics such as penicillin
and cephalexin, and nonsteroidal anti-inflammatory drugs (aspirin less frequently than others), as well as proton-pump inhibitors, rifampicin, sulfa drugs, fluoroquinolones, diuretics, allopurinol, and phenytoin. The time between exposure to the drug and the development of acute tubulointerstitial nephritis can be anywhere from 5 days to 5 months (fenoprofen induced).
Interstitial nephritis (or tubulo-interstitial nephritis) is a form of nephritis affecting the interstitium of the kidneys surrounding the tubules, i.e., is inflammation of the spaces between renal tubules. This disease can be either acute, meaning it occurs suddenly, or chronic, meaning it is ongoing and eventually ends in kidney failure.
Men are affected three times as often as women. There is also marked geographic variation in the prevalence of IgA nephropathy throughout the world. It is the most common glomerular disease in the Far East and Southeast Asia, accounting for almost half of all the patients with glomerular disease. However, it accounts for only about 25% of the proportion in European and about 10% among North Americans, with African–Americans having a very low prevalence of about 2%. However, a confounding factor in this analysis is the existing policy of screening and use of kidney biopsy as an investigative tool. School children in Japan undergo routine urinalysis (as do army recruits in Singapore) and any suspicious abnormality is pursued with a kidney biopsy, which might partly explain the high observed incidence of IgA nephropathy in those countries.
Calciphylaxis most commonly occurs in patients with end-stage renal disease who are on hemodialysis or who have recently received a renal (kidney) transplant. Yet calciphylaxis does not occur only in end-stage renal disease patients. When reported in patients without end-stage renal disease, it is called non-uremic calciphylaxis by Nigwekar et al. Non-uremic calciphylaxis has been observed in patients with primary hyperparathyroidism, breast cancer (treated with chemotherapy), liver cirrhosis (due to alcohol abuse), cholangiocarcinoma, Crohn's disease, rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE).
Pyonephrosis is sometimes a complication of kidney stones, which can be a source of persisting infection. It may also occur spontaneously. It can occur as a complication of hydronephrosis or pyelonephritis.
Management of sickle nephropathy is not separate from that of overall patient management. In addition, however, the use of ACE inhibitors has been associated with improvement of the hyperfiltration glomerulopathy. Three-year graft and patient survival in kidney transplant recipients with sickle nephropathy is lower when compared to those with other causes of end-stage kidney disease.
Complications of analgesic nephropathy include pyelonephritis and end-stage kidney disease. Risk factors for poor prognosis include recurrent urinary tract infection and persistently elevated blood pressure. Analgesic nephropathy also appears to increase the risk of developing cancers of the urinary system.
PKD is caused by abnormal genes which produce a specific abnormal protein which has an adverse affect on tubule development. PKD is a general term for two types, each having their own pathology and genetic cause: autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD).
PKD is one of the most common hereditary diseases in the United States, affecting more than 600,000 people. It is the cause of nearly 10% of all end-stage renal disease. It equally affects men, women, and all races. PKD occurs in some animals as well as humans.