Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Pogosta disease is a viral disease, established to be identical with other diseases, Karelian fever and Ockelbo disease. The names are derived from the words Pogosta, Karelia and Ockelbo, respectively.
The symptoms of the disease include usually rash, as well as mild fever and other flu-like symptoms; in most cases the symptoms last less than 5 days. However, in some cases, the patients develop a painful arthritis. There are no known chemical agents available to treat the disease.
It has long been suspected that the disease is caused by a Sindbis-like virus, a positive-stranded RNA virus belonging to the Alphavirus genus and family Togaviridae. In 2002 a strain of Sindbis was isolated from patients during an outbreak of the Pogosta disease in Finland, confirming the hypothesis.
This disease is mainly found in the Eastern parts of Finland; a typical Pogosta disease patient is a middle-aged person who has been infected through a mosquito bite while picking berries in the autumn. The prevalence of the disease is about 100 diagnosed cases every year, with larger outbreaks occurring in 7-year intervals.
Currently, no vaccine against relapsing fever is available, but research continues. Developing a vaccine is very difficult because the spirochetes avoid the immune response of the infected person (or animal) through antigenic variation. Essentially, the pathogen stays one step ahead of antibodies by changing its surface proteins. These surface proteins, lipoproteins called variable major proteins, have only 30–70% of their amino acid sequences in common, which is sufficient to create a new antigenic "identity" for the organism. Antibodies in the blood that are binding to and clearing spirochetes expressing the old proteins do not recognize spirochetes expressing the new ones. Antigenic variation is common among pathogenic organisms. These include the agents of malaria, gonorrhea, and sleeping sickness. Important questions about antigenic variation are also relevant for such research areas as developing a vaccine against HIV and predicting the next influenza pandemic.
Rocky Mountain spotted fever can be a very severe illness and patients often require hospitalization. Because "R. rickettsii" infects the cells lining blood vessels throughout the body, severe manifestations of this disease may involve the respiratory system, central nervous system, gastrointestinal system, or kidneys.
Long-term health problems following acute Rocky Mountain spotted fever infection include partial paralysis of the lower extremities, gangrene requiring amputation of fingers, toes, or arms or legs, hearing loss, loss of bowel or bladder control, movement disorders, and language disorders. These complications are most frequent in persons recovering from severe, life-threatening disease, often following lengthy hospitalizations
The study of RRF has been recently facilitated by the development of a mouse model. Mice infected with RRV develop hind-limb arthritis/arthralgia which is similar to human disease. The disease in mice is characterized by an inflammatory infiltrate including macrophages which are immunopathogenic and exacerbate disease. Furthermore, mice deficient in the C3 protein do not suffer from severe disease following infection. This indicates that an aberrant innate immune response is responsible for severe disease following RRV infection.
The pathogenic agent is found everywhere except New Zealand. The bacterium is extremely sustainable and virulent: a single organism is able to cause an infection. The common source of infection is inhalation of contaminated dust, contact with contaminated milk, meat, or wool, and particularly birthing products. Ticks can transfer the pathogenic agent to other animals. Transfer between humans seems extremely rare and has so far been described in very few cases.
Some studies have shown more men to be affected than women, which may be attributed to different employment rates in typical professions.
“At risk” occupations include:
- Veterinary personnel
- Stockyard workers
- Farmers
- Sheep shearers
- Animal transporters
- Laboratory workers handling potentially infected veterinary samples or visiting abattoirs
- People who cull and process kangaroos
- Hide (tannery) workers
Carrión's disease, or Oroya fever, or Peruvian wart is a rare infectious disease found only in Peru, Ecuador, and Colombia. It is endemic in some areas of Peru, is caused by infection with the bacterium "Bartonella bacilliformis", and transmitted by sandflies of genus "Lutzomyia".
Cat scratch disease occurs worldwide. Cats are the main reservoir of "Bartonella henselae", and the bacterium is transmitted to cats by the cat flea "Ctenocephalides felis". Infection in cats is very common with a prevalence estimated between 40-60%, younger cats being more commonly infective. Cats usually become immune to the infection, while dogs may be very symptomatic. Humans may also acquire it through flea or tick bites from infected dogs, cats, coyotes, and foxes.
Trench fever, produced by "Bartonella quintana" infection, is transmitted by the human body louse "Pediculus humanus corporis". Humans are the only known reservoir. Thorough washing of clothing may help to interrupt the transmission of infection.
A possible role for ticks in transmission of "Bartonella" species remains to be elucidated; in November 2011, "Bartonella rochalimae", "B. quintana", and "B. elizabethae" DNA was first reported in "Rhipicephalus sanguineus" and "Dermacentor nitens" ticks in Peru.
Cases of African tick bite fever have been more frequently reported in the literature among international travelers. Data examining rates in local populations are limited. Among locals who live in endemic areas, exposure at a young age and mild symptoms or lack of symptoms, as well as decreased access to diagnostic tools, may lead to decreased diagnosis. In Zimbabwe, where "R. africae" is endemic, one study reported an estimated yearly incidence of 60-80 cases per 10,000 patients.
Looking at published data over the past 35 years, close to 200 confirmed cases of African tick bite fever in international travelers have been reported. The majority (~80%) of these cases occurred in travelers returning from South Africa.
Tick-borne relapsing fever is found primarily in Africa, Spain, Saudi Arabia, Asia, and certain areas of Canada and the western United States. Other relapsing infections are acquired from other "Borrelia" species, which can be spread from rodents, and serve as a reservoir for the infection, by a tick vector.
- "Borrelia crocidurae" – occurs in Egypt, Mali, Senegal, Tunisia; vectors – "Carios erraticus", "Ornithodoros sonrai"; animal host – shrew ("Crocidura stampflii")
- "Borrelia duttoni", transmitted by the soft-bodied African tick "Ornithodoros moubata", is responsible for the relapsing fever found in central, eastern, and southern Africa.
- "Borrelia hermsii"
- "Borrelia hispanica"
- "Borrelia miyamotoi"
- "Borrelia parkeri"
- "Borrelia turicatae"
"B. hermsii" and "B. recurrentis" cause very similar diseases. However, one or two relapses are common with the disease associated with "B. hermsii", which is also the most common cause of relapsing disease in the United States. (Three or four relapses are common with the disease caused by "B. recurrentis", which has longer febrile and afebrile intervals and a longer incubation period than "B. hermsii".)
The disease was first reported in the town of in Buenos Aires province, Argentina in 1958, giving it one of the names by which it is known. Various theories about its nature were proposed: it was Weil's disease, leptospirosis, caused by chemical pollution. It was associated with fields containing stubble after the harvest, giving it another of its names.
The endemic area of AHF covers approximately 150,000 km², compromising the provinces of Buenos Aires, Córdoba, Santa Fe and La Pampa, with an estimated risk population of 5 million.
The vector, a small rodent known locally as "ratón maicero" ("maize mouse"; "Calomys musculinus"), suffers from chronic asymptomatic infection, and spreads the virus through its saliva and urine. Infection is produced through contact of skin or mucous membranes, or through inhalation of infected particles. It is found mostly in people who reside or work in rural areas; 80% of those infected are males between 15 and 60 years of age.
Argentine hemorrhagic fever (AHF) or O'Higgins disease, also known in Argentina as mal de los rastrojos, stubble disease, is a hemorrhagic fever and zoonotic infectious disease occurring in Argentina. It is caused by the "Junín virus" (an arenavirus, closely related to the "Machupo virus", causative agent of Bolivian hemorrhagic fever). Its vector is a species of rodent, the corn mouse.
Treatment is similar to hepatitis B, but due to its high lethality, more aggressive therapeutic approaches are recommended in the acute phase. In absence of a specific vaccine against delta virus, the vaccine against HBV must be given soon after birth in risk groups.
There are only between 500 and 2500 cases of Rocky Mountain spotted fever reported in the United States per year, and in only about 20% can the tick be found.
Host factors associated with severe or fatal Rocky Mountain spotted fever include advanced age, male sex, African or Caribbean background, chronic alcohol abuse, and glucose-6-phosphate dehydrogenase (G6PD) deficiency. Deficiency of G6PD is a genetic condition affecting about 12 percent of the Afro-American male population. Deficiency in this enzyme is associated with a high proportion of severe cases of Rocky Mountain spotted fever. This is a rare clinical complication that is often fatal within five days of the onset of the disease.
In the early 1940´s, outbreaks were described in the Mexican states of Sinaloa, Sonora, Durango, and Coahuila driven by dogs and Rhipicephalus sanguineus sensu lato, the brown dog tick. Over the ensuing 100 years case fatality rates were 30%–80%. In 2015, there was an abrupt rise in Sonora cases with 80 fatal cases. From 2003 to 2016, cases increased to 1394 with 247 deaths.
Prevention of ATBF centers around protecting oneself from tick bites by wearing long pants and shirt, and using insecticides like DEET on the skin. Travelers to rural areas in Africa and the West Indies should be aware that they may come in contact with ATBF tick vectors. Infection is more likely to occur in people who are traveling to rural areas or plan to spend time participating in outdoor activities. Extra caution should be taken in November - April, when "Amblyomma" ticks are more active. Inspection of the body, clothing, gear, and any pets after time outdoors can help to identify and remove ticks early.
There is currently no vaccine available. The primary method of disease prevention is minimizing mosquito bites, as the disease is only transmitted by mosquitoes. Typical advice includes use of mosquito repellent and mosquito screens, wearing light coloured clothing, and minimising standing water around homes (e.g. removing Bromeliads, plant pots, garden ponds). Staying indoors during dusk/dawn hours when mosquitos are most active may also be effective. Bush camping is a common precipitant of infection so particular care is required.
It is estimated that seven to ten million people are infected by leptospirosis annually. One million cases of severe leptospirosis occur annually, with 58,900 deaths. Annual rates of infection vary from 0.02 per 100,000 in temperate climates to 10 to 100 per 100,000 in tropical climates. This leads to a lower number of registered cases than likely exists.
The number of new cases of leptospirosis is difficult to estimate since many cases of the disease go unreported. There are many reasons for this, but the biggest issue is separating the disease from other similar conditions. Laboratory testing is lacking in many areas.
In context of global epidemiology, the socioeconomic status of many of the world’s population is closely tied to malnutrition; subsequent lack of micronutrients may lead to increased risk of infection and death due to leptospirosis infection. Micronutrients such as iron, calcium, and magnesium represent important areas of future research.
Outbreaks that occurred after the 1940's have happened mostly in the late summer seasons, which happens to be the driest part of the year. The people at the highest risk for leptospirosis are young people whose age ranges from 5-16 years old, and can also range to young adults.
The amount of cases increase during the rainy season in the tropics and during the late summer or early fall in Western countries. This happens because leptospires survive best in fresh water, damp alkaline soil, vegetation, and mud with temperatures higher that 22° C. This also leads to increased risk of exposure to populations during flood conditions, and leptospire concentrations to peak in isolated pools during drought. There is no evidence of leptospirosis having any effect on sexual and age-related differences. However, a major risk factor for development of the disease is occupational exposure, a disproportionate number of working-aged males are affected. There have been reported outbreaks where more than 40% of people are younger than 15. “Active surveillance measures have detected leptospire antibodies in as many as 30% of children in some urban American populations.” Potential reasons for such cases include children playing with suspected vectors such as dogs or indiscriminate contact with water.
While obviously preventable by staying away from rodents, otherwise hands and face should be washed after contact and any scratches both cleaned and antiseptics applied. The effect of chemoprophylaxis following rodent bites or scratches on the disease is unknown. No vaccines are available for these diseases.
Improved conditions to minimize rodent contact with humans are the best preventive measures. Animal handlers, laboratory workers, and sanitation and sewer workers must take special precautions against exposure. Wild rodents, dead or alive, should not be touched and pets must not be allowed to ingest rodents.
Those living in the inner cities where overcrowding and poor sanitation cause rodent problems are at risk from the disease. Half of all cases reported are children under 12 living in these conditions.
Boutonneuse fever (also called Mediterranean spotted fever, fièvre boutonneuse, Kenya tick typhus, Indian tick typhus, Marseilles fever, or African tick-bite fever) is a fever as a result of a rickettsial infection caused by the bacterium "Rickettsia conorii" and transmitted by the dog tick "Rhipicephalus sanguineus". Boutonneuse fever can be seen in many places around the world, although it is endemic in countries surrounding the Mediterranean Sea. This disease was first described in Tunisia in 1910 by Conor and Bruch and was named "boutonneuse" (French for "spotty") due to its papular skin rash characteristics.
Lábrea fever is a coinfection or superinfection of hepatitis D or delta virus and hepatitis B (HBV). The infection by delta virus may occur in a patient who already has the HBV, or both viruses may infect at the same time a previously uninfected patient. Delta virus can only multiply in the presence of HBV, therefore vaccination against HBV prevents infection. Thus, American and Brazilian scientists have determined that the delta virusa, virus, which is a small circular RNA virus, is normally unable to cause illness by itself, due to a defect. When it is combined with HBV, Lábrea hepatitis may ensue. The main discovery of delta virus and HBV association was done by Dr. Gilberta Bensabath, a leading tropical virologist of the Instituto Evandro Chagas, of Belém, state of Pará, and her collaborators.
Infected patients show extensive destruction of liver tissue, with steatosis of a particular type (microsteatosis, characterized by small fat droplets inside the cells), and infiltration of large numbers of inflammatory cells called "morula cells", comprised mainly by macrophages containing delta virus antigens.
In the 1987 Boca do Acre study, scientists did an epidemiological survey and reported delta virus infection in 24% of asymptomatic HBV carriers, 29% of acute nonfulminant hepatitis B cases, 74% of fulminant hepatitis B cases, and 100% of chronic hepatitis B cases. The delta virus seems to be endemic in the Amazon region.
There are several populations that have a higher risk for contracting coccidioidomycosis and developing the advanced disseminated version of the disease. Populations with exposure to the airborne arthroconidia working in agriculture and construction have a higher risk. Outbreaks have also been linked to earthquakes, windstorms and military training exercises where the ground is disturbed. Historically an infection is more likely to occur in males than females, although this could be attributed to occupation rather than gender specific. Women who are pregnant and immediately postpartum are at a high risk of infection and dissemination. There is also an association between stage of pregnancy and severity of the disease, with third trimester women being more likely to develop dissemination. Presumably this is related to highly elevated hormonal levels, which stimulate growth and maturation of spherules and subsequent release of endospores. Certain ethnic populations are more susceptible to disseminated coccioidomycosis. The risk of dissemination is 175 times greater in Filipinos and 10 times greater in African Americans than non-Hispanic whites. Individuals with a weakened immune system are also more susceptible to the disease. In particular, individuals with HIV and diseases that impair T-cell function. Individuals with pre-existing conditions such as diabetes are also at a higher risk. Age also affects the severity of the disease, with more than one third of deaths being in the 65-84 age group.
Spondweni fever is an infectious disease caused by the Spondweni virus. It is characterized by a fever, chills, nausea, headaches, malaise and epistaxis. Transmitted by mosquitoes, it is found in sub-Saharan Africa and Papua New Guinea.
To avoid tick bites and infection, experts advise:
- Avoid tick-infested areas, especially during the warmer months.
- Wear light-colored clothing so ticks can be easily seen. Wear a long sleeved shirt, hat, long pants, and tuck pant legs into socks.
- Walk in the center of trails to avoid overhanging grass and brush.
- Clothing and body parts should be checked every few hours for ticks when spending time outdoors in tick-infested areas. Ticks are most often found on the thigh, arms, underarms, and legs. Ticks can be very small (no bigger than a pinhead). Look carefully for new "freckles".
- The use of insect repellents containing DEET on skin or permethrin on clothing can be effective. Follow the directions on the container and wash off repellents when going indoors.
- Remove attached ticks immediately.
Contracting the CTF virus is thought to provide long-lasting immunity against reinfection. However, it is always wise to be on the safe side and try to prevent tick bites.
Doxycycline has been provided once a week as a prophylaxis to minimize infections during outbreaks in endemic regions. However, there is no evidence that chemoprophylaxis is effective in containing outbreaks of leptospirosis, and use of antibiotics increases antibiotics resistance. Pre-exposure prophylaxis may be beneficial for individuals traveling to high-risk areas for a short stay.
Effective rat control and avoidance of urine contaminated water sources are essential preventive measures. Human vaccines are available only in a few countries, such as Cuba and China. Animal vaccines only cover a few strains of the bacteria. Dog vaccines are effective for at least one year.
Measures to reduce contact between the vesper mouse and humans may have contributed to limiting the number of outbreaks, with no cases identified between 1973 and 1994. Although there are no cures or vaccine for the disease, a vaccine developed for the genetically related Junín virus which causes Argentine hemorrhagic fever has shown evidence of cross-reactivity to Machupo virus, and may therefore be an effective prophylactic measure for people at high risk of infection. Post infection (and providing that the person survives the infection), those that have contracted BHF are usually immune to further infection of the disease.
Coccidioidomycosis (, ), commonly known as "cocci", "Valley fever", as well as "California fever", "desert rheumatism", and "San Joaquin Valley fever", is a mammalian fungal disease caused by "Coccidioides immitis" or "Coccidioides posadasii". Coccidioidomycosis is endemic in certain parts of Arizona, California, Nevada, New Mexico, Texas, Utah, and northern Mexico.
"C. immitis" is a dimorphic saprophytic fungus that grows as a mycelium in the soil and produces a spherule form in the host organism. It resides in the soil in certain parts of the southwestern United States, most notably in California and Arizona. It is also commonly found in northern Mexico, and parts of Central and South America. "C. immitis" is dormant during long dry spells, then develops as a mold with long filaments that break off into airborne spores when it rains. The spores, known as arthroconidia, are swept into the air by disruption of the soil, such as during construction, farming, or an earthquake. Windstorms may also cause epidemics far from endemic areas. In December 1977 a windstorm in an endemic area around Arvin, CA led to several hundred cases, including deaths, in non-endemic areas hundreds of miles away.
Coccidioidomycosis is a common cause of community-acquired pneumonia in the endemic areas of the United States. Infections usually occur due to inhalation of the arthroconidial spores after soil disruption. The disease is not contagious. In some cases the infection may recur or become chronic.
The infections are acquired through rat bites or scratches. It can occur as nosocomial infections (i.e., acquired from hospitals), or due to exposure or close associations with animals preying on rats, mice, squirrels, etc. Sodoku is mostly seen in Asia. The incubation period is 4 to 28 days.