Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
A syndrome is a set of medical signs and symptoms occurring together, constitutes a particular disease or disorder. The word derives from the Greek σύνδρομον, meaning "concurrence". In some instances, a syndrome is so closely linked with a pathogenesis or cause that the words "syndrome", "disease", and "disorder" end up being used interchangeably for them. This is especially true of inherited syndromes. For example, Down syndrome, Wolf–Hirschhorn syndrome, and Andersen syndrome are disorders with known pathogeneses, so each is more than just a set of signs and symptoms, despite the "syndrome" nomenclature. In other instances, a syndrome is not specific to only one disease. For example, toxic shock syndrome can be caused by various toxins; premotor syndrome can be caused by various brain lesions; and premenstrual syndrome is not a disease but simply a set of symptoms.
If an underlying genetic cause is suspected but not known, a condition may be referred to as a genetic association (often just "association" in context). By definition, an association indicates that the collection of signs and symptoms occurs in combination more frequently than would be likely by chance alone.
Syndromes are often named after the physician or group of physicians that discovered them or initially described the full clinical picture. Such eponymous syndrome names are examples of medical eponyms. Recently, there has been a shift towards naming conditions descriptively (by symptoms or underlying cause) rather than eponymously, but the eponymous syndrome names often persist in common usage.
In medicine a broad definition of syndrome is used, which describes a collection of symptoms and findings without necessarily tying them to a single identifiable pathogenesis. The more specific definition employed in medical genetics describes a subset of all medical syndromes.
As the syndrome is due to a chromosomal non-disjunction event, the recurrence risk is not high compared to the general population. There has been no evidence found that indicates non-disjunction occurs more often in a particular family.
After the first discovery and description of Marshall–Smith syndrome in 1971, research to this rare syndrome has been carried out.
- Adam, M., Hennekam, R.C.M., Butler, M.G., Raf, M., Keppen, L., Bull, M., Clericuzio, C., Burke, L., Guttacher, A., Ormond, K., & Hoyme, H.E. (2002). Marshall–Smith syndrome: An osteochondrodysplasia with connective tissue abnormalities. 23rd Annual David W. Smith Workshop on Malformations and Morphogenesis, August 7, Clemson, SC.
- Adam MP, Hennekam RC, Keppen LD, Bull MJ, Clericuzio CL, Burke LW, Guttmacher AE, Ormond KE and Hoyme HE: Marshall-Smith Syndrome: Natural history and evidence of an osteochondrodysplasia with connective tissue abnormalities. American Journal of Medical Genetics 137A:117–124, 2005.
- Baldellou Vazquez A, Ruiz-Echarri Zelaya MP, Loris Pablo C, Ferr#{225}ndez Longas A, Tamparillas Salvador M. El sIndrome de Marshall-Smith: a prop#{243}sito de una observad#{243}n personal. An Esp Pediatr 1983; 18:45-50.
- Butler, M.G. (2003). Marshall–Smith syndrome. In: The NORD Guide to Rare Disorders. (pp219–220) Lippincott, Williams & Wilkins, Philadelphia, PA.
- Charon A, Gillerot T, Van Maldergem L, Van Schaftingen MH, de Bont B, Koulischer L. The Marshall–Smith syndrome. Eur J Pediatr 1990; 150: 54-5.
- Dernedde, G., Pendeville, P., Veyckemans, F., Verellen, G. & Gillerot, Y. (1998). Anaesthetic management of a child with Marshall–Smith syndrome. Canadian Journal of Anesthesia. 45 (7): 660. Anaesthetic management of a child with Marshall-Smith syndrome
- Diab, M., Raff, M., Gunther, D.F. (2002). Osseous fragility in Marshall–Smith syndrome. Clinical Report: Osseous fragility in Marshall-Smith syndrome
- Ehresmann, T., Gillessen-Kaesbach G., Koenig R. (2005). Late diagnosis of Marshall Smith Syndrome (MSS). In: Medgen 17.
- Hassan M, Sutton T, Mage K, LimalJM, Rappaport R. The syndrome of accelerated bone maturation in the newborn infant with dysmorphism and congenital malformations: (the so-called Marshall–Smith syndrome). Pediatr Radiol 1976; 5:53-57.
- Hoyme HE and Bull MJ: The Marshall-Smith Syndrome: Natural history beyond infancy. Western Society for Pediatric Research, Carmel, California, February, 1987. Clin Res 35:68A, 1987.
- Hoyme HE and Bull MJ: The Marshall-Smith Syndrome: Natural history beyond infancy. David W. Smith Morphogenesis and Malformations Workshop. Greenville, SC, August, 1987. Proceedings of the Greenwood Genetics Center 7:152, 1988.
- Hoyme HE, Byers PH, Guttmacher AE: Marshall–Smith syndrome: Further evidence of an osteochondrodysplasia in long-term survivors. David W. Smith Morphogenesis and Malformations Workshop, Winston-Salem, NC, August, 1992. Proceedings of the Greenwood Genetic Center 12:70, 1993.
- .
- Tzu-Jou Wang (2002). Marshall–Smith syndrome in a Taiwanese patient with T-cell immunodeficiency. Am J Med Genet Part A;112 (1):107-108.
Respiratory complications are often cause of death in early infancy.
Victor Khrisanfovich Kandinsky () (1849, Byankino, Siberia - 1889) was a Russian physician, and was 2nd cousin to famed artist Wassily Kandinsky. He was born in Siberia into a large family of extremely wealthy businessmen.
In 1877 as a military physician in the Balkans during the Russo-Turkish War, he began experiencing mood swings and hallucinations. Kandinsky performed self-diagnosis, and he referred to his mental condition as "Primäre Verrücktheit" (primary paranoid psychosis) which has been anachronistically translated into modern terms as a "schizophrenic-like state". In 1885 Kandinsky published a book written in German on "pseudohallucinations" in which he describes and details hallucinations largely based on his personal experiences. In September 1889, feeling that his psychotic symptoms were returning, he took his own life by taking an overdose of morphine. He died as a patient in the institution he had formerly run as the medical superintendent, the St. Nicholas Asylum in St. Petersburg.
In a monograph published posthumously in 1890, Kandinsky described a condition which involved being alienated from one's personal mental processes, combined with delusions of being physically and mentally influenced by external forces. The syndrome he described is now known as Kandinsky-Clérambault syndrome, named along with French psychiatrist Gaëtan Gatian de Clérambault. The syndrome also known as "syndrome of psychic automatism".
In the United States, sarcoidosis has a prevalence of approximately 10 cases per 100,000 whites and 36 cases per 100,000 blacks. Heerfordt syndrome is present in 4.1–5.6% of those with sarcoidosis.
In mild cases, individuals with XXXY syndrome may lead a relatively good life. These individuals may face difficulties in communicating with others due to their language-based deficits. These deficits may make forming bonds with others difficult, but fulfilling relationships with others are still achievable. Those with higher scores in adaptive functioning are likely to have higher quality of life because they can be independent.
Roberts syndrome is an extremely rare condition that only affects about 150 reported individuals. Although there have been only about 150 reported cases, the affected group is quite diverse and spread worldwide. Parental consanguinity (parents are closely related) is common with this genetic disorder. The frequency of Roberts syndrome carriers is unknown.
There is an association between taking aspirin for viral illnesses and the development of Reye syndrome, but no animal model of Reye syndrome has been developed in which aspirin causes the condition.
The serious symptoms of Reye syndrome appear to result from damage to cellular mitochondria, at least in the liver, and there are a number of ways that aspirin could cause or exacerbate mitochondrial damage. A potential increased risk of developing Reye syndrome is one of the main reasons that aspirin has not been recommended for use in children and teenagers, the age group for which the risk of lasting serious effects is highest.
No research has found a definitive cause of Reye syndrome, and association with aspirin has been shown through epidemiological studies. The diagnosis of "Reye Syndrome" greatly decreased in the 1980s, when genetic testing for inborn errors of metabolism was becoming available in developed countries. A retrospective study of 49 survivors of cases diagnosed as "Reye's Syndrome" showed that the majority of the surviving patients had various metabolic disorders, particularly a fatty-acid oxidation disorder medium-chain acyl-CoA dehydrogenase deficiency.
In some countries, oral mouthcare product Bonjela (not the form specifically designed for teething) has labeling cautioning against its use in children, given its salicylate content. There have been no cases of Reye syndrome following its use, and the measure is a precaution. Other medications containing salicylates are often similarly labeled as a precaution.
The Centers for Disease Control and Prevention (CDC), the U.S. Surgeon General, the American Academy of Pediatrics (AAP) and the Food and Drug Administration (FDA) recommend that aspirin and combination products containing aspirin not be given to children under 19 years of age during episodes of fever-causing illnesses. Hence, in the United States, it is advised that the opinion of a doctor or pharmacist should be obtained before anyone under 19 years of age is given any medication containing aspirin (also known on some medicine labels as acetylsalicylate, salicylate, acetylsalicylic acid, ASA, or salicylic acid).
Current advice in the United Kingdom by the Committee on Safety of Medicines is that aspirin should not be given to those under the age of 16 years, unless specifically indicated in Kawasaki disease or in the prevention of blood clot formation.
Nevo Syndrome is considered to be a rare disorder. Since its first appearance in 1974, only a handful of cases have been reported. Studies have shown showing similarities between Nevo Syndrome with Ehlers-Danlos syndrome as well as Sotos syndrome. There is an astounding overlap of phenotypic manifestations between Nevo Syndrome and the more frequent Sotos syndrome, which are both caused by the NSD1 deletion. Sotos syndrome is an autosomal dominant condition associated with learning disabilities, a distinctive facial appearance, and overgrowth. Studies have shown an overwhelming occurrence (half of those involved in the study) of Nevo syndrome in those individuals of Middle-Eastern descent.
Documented cases of Reye syndrome in adults are rare. The recovery of adults with the syndrome is generally complete, with liver and brain function returning to normal within two weeks of onset. In children, however, mild to severe permanent brain damage is possible, especially in infants. Over thirty percent of the cases reported in the United States from 1981 through 1997 resulted in fatality.
Males with Down syndrome usually do not father children, while females have lower rates of fertility relative to those who are unaffected. Fertility is estimated to be present in 30–50% of females. Menopause typically occurs at an earlier age. The poor fertility in males is thought to be due to problems with sperm development; however, it may also be related to not being sexually active. As of 2006, three instances of males with Down syndrome fathering children and 26 cases of females having children have been reported. Without assisted reproductive technologies, around half of the children of someone with Down syndrome will also have the syndrome.
Williams syndrome is a microdeletion syndrome caused by the spontaneous deletion of genetic material from the region q11.23 of one member of the pair of chromosome 7, so that the person is hemizygous for those genes. The deleted region includes more than 25 genes, and researchers believe that being hemizygous for these genes probably contributes to the characteristic features of this syndrome. "CLIP2", "ELN", "GTF2I", "GTF2IRD1", and "LIMK1" are among the genes that are typically deleted from one chromosome in people with Williams syndrome. Researchers have found this hemizygosity for the "ELN" gene, which codes for the protein elastin, is associated with the connective-tissue abnormalities and cardiovascular disease (specifically supravalvular aortic stenosis and supravalvular pulmonary stenosis) found in many people with this syndrome. The insufficient supply of elastin may also be the cause of full cheeks, harsh or hoarse voice, hernias and bladder diverticula often found in those with Williams syndrome. Studies suggest that hemizygosity in "LIMK1", "GTF2I", "GTF2IRD1", and perhaps other genes may help explain the characteristic difficulties with visual–spatial tasks. Additionally, there is evidence that the hemizygosity in several of these genes, including "CLIP2", may contribute to the unique behavioral characteristics, learning disabilities, and other cognitive difficulties seen in Williams syndrome.
More than 80% of children with Patau syndrome die within the first year of life. Children with the mosaic variation are usually affected to a lesser extent. In a retrospective Canadian study of 174 children with trisomy 13, median survival time was 12.5 days. One and ten year survival was 19.8% and 12.9% respectively.
It is not possible to make a generalised prognosis for development due to the variability of causes, as mentioned above, the differing types of symptoms and cause. Each case must be considered individually.
The prognosis for children with idiopathic West syndrome are mostly more positive than for those with the cryptogenic or symptomatic forms. Idiopathic cases are less likely to show signs of developmental problems before the attacks begin, the attacks can often be treated more easily and effectively and there is a lower relapse rate. Children with this form of the syndrome are less likely to go on to develop other forms of epilepsy; around two in every five children develop at the same rate as healthy children.
In other cases, however, treatment of West syndrome is relatively difficult and the results of therapy often dissatisfying; for children with symptomatic and cryptogenic West syndrome, the prognosis is generally not positive, especially when they prove resistant to therapy.
Statistically, 5 out of every 100 children with West syndrome do not survive beyond five years of age, in some cases due to the cause of the syndrome, in others for reasons related to their medication. Only less than half of all children can become entirely free from attacks with the help of medication. Statistics show that treatment produces a satisfactory result in around three out of ten cases, with only one in every 25 children's cognitive and motoric development developing more or less normally.
A large proportion (up to 90%) of children suffer severe physical and cognitive impairments, even when treatment for the attacks is successful. This is not usually because of the epileptic fits, but rather because of the causes behind them (cerebral anomalies or their location or degree of severity). Severe, frequent attacks can (further) damage the brain.
Permanent damage often associated with West syndrome in the literature include cognitive disabilities, learning difficulties and behavioural problems, cerebral palsy (up to 5 out of 10 children), psychological disorders and often autism (in around 3 out of 10 children). Once more, the cause of each individual case of West syndrome must be considered when debating cause and effect.
As many as 6 out of 10 children with West syndrome suffer from epilepsy later in life. Sometimes West syndrome turns into a focal or other generalised epilepsy. Around half of all children develop Lennox-Gastaut syndrome.
Risk factors for mental illness include genetic inheritance, such as parents having depression, or a propensity for high neuroticism or "emotional instability".
In depression, parenting risk factors include parental unequal treatment, and there is association with high cannabis use.
In schizophrenia and psychosis, risk factors include migration and discrimination, childhood trauma, bereavement or separation in families, and abuse of drugs, including cannabis, and urbanicity.
In anxiety, risk factors may include family history (e.g. of anxiety), temperament and attitudes (e.g. pessimism), and parenting factors including parental rejection, lack of parental warmth, high hostility, harsh discipline, high maternal negative affect, anxious childrearing, modelling of dysfunctional and drug-abusing behaviour, and child abuse (emotional, physical and sexual).
Environmental events surrounding pregnancy and birth have also been implicated. Traumatic brain injury may increase the risk of developing certain mental disorders. There have been some tentative inconsistent links found to certain viral infections, to substance misuse, and to general physical health.
Social influences have been found to be important, including abuse, neglect, bullying, social stress, traumatic events and other negative or overwhelming life experiences. For bipolar disorder, stress (such as childhood adversity) is not a specific cause, but does place genetically and biologically vulnerable individuals at risk for a more severe course of illness. The specific risks and pathways to particular disorders are less clear, however. Aspects of the wider community have also been implicated, including employment problems, socioeconomic inequality, lack of social cohesion, problems linked to migration, and features of particular societies and cultures.
Pashayan syndrome also known as Pashayan–Prozansky Syndrome, and blepharo-naso-facial syndrome is a rare syndrome. Facial abnormalities characterise this syndrome as well as malformation of extremities. Specific characteristics would be a bulky, flattened nose, where the face has a mask like appearance and the ears are also malformed.
A subset of Pashayan syndrome has also been described, known as "cerebrofacioarticular syndrome", "Van Maldergem syndrome'" or "Van Maldergem–Wetzburger–Verloes syndrome". Similar symptoms are noted in these cases as in Pashayan syndrome.
Incidence is around 1:3200 to 1:3500 of live births. Statistically, boys are more likely to be affected than girls at a ratio of around 1.3:1. In 9 out of every 10 children affected, the spasms appear for the first time between the third and the twelfth month of age. In rarer cases, spasms may occur in the first two months or during the second to fourth year of age.
Between 5 and 15% of children with Down syndrome in Sweden attend regular school. Some graduate from high school; however, most do not. Of those with intellectual disability in the United States who attended high school about 40% graduated. Many learn to read and write and some are able to do paid work. In adulthood about 20% in the United States do paid work in some capacity. In Sweden, however, less than 1% have regular jobs. Many are able to live semi-independently, but they often require help with financial, medical, and legal matters. Those with mosaic Down syndrome usually have better outcomes.
Individuals with Down syndrome have a higher risk of early death than the general population. This is most often from heart problems or infections. Following improved medical care, particularly for heart and gastrointestinal problems, the life expectancy has increased. This increase has been from 12 years in 1912, to 25 years in the 1980s, to 50 to 60 years in the developed world in the 2000s. Currently between 4 and 12% die in the first year of life. The probability of long-term survival is partly determined by the presence of heart problems. In those with congenital heart problems 60% survive to 10 years and 50% survive to 30 years of age. In those without heart problems 85% survive to 10 years and 80% survive to 30 years of age. About 10% live to 70 years of age. The National Down Syndrome Society have developed information regarding the positive aspects of life with Down syndrome.
Nevo Syndrome is an autosomal recessive disorder. Most times in which a child is afflicted with Nevo Syndrome, both their parents are of average height and weight. It is only until after birth when the characteristic physical traits associated with disease are manifested, and the disorder is actually diagnosed. One study showed that despite the increased growth rates, the patient was completely healthy up until age 6, when he was admitted into the hospital. Nevo syndrome is usually associated with early childhood fatality. Children with Nevo Syndrome have a high occurrence of death due to cardiac arrest because their developing hearts cannot keep up with their overgrown body.
Males are twice as likely as females to have this characteristic, and it tends to run in families. In its non-symptomatic form, it is more common among Asians and Native Americans than among other populations, and in some families there is a tendency to inherit the condition unilaterally, that is, on one hand only.
The presence of a single transverse palmar crease can be, but is not always, a symptom associated with abnormal medical conditions, such as fetal alcohol syndrome, or with genetic chromosomal abnormalities, including Down Syndrome (chromosome 21), cri du chat syndrome (chromosome 5), Klinefelter syndrome, Wolf-Hirschhorn Syndrome, Noonan syndrome (chromosome 12), Patau syndrome (chromosome 13), IDIC 15/Dup15q (chromosome 15), Edward's syndrome (chromosome 18), and Aarskog-Scott syndrome (X-linked recessive), or autosomal recessive disorder, such as Leaukocyte adhesion deficiency-2 (LAD2). A unilateral single palmar crease was also reported in a case of chromosome 9 mutation causing Nevoid basal cell carcinoma syndrome and Robinow syndrome. It is also sometimes found on the hand of the affected side of patients with Poland Syndrome, and craniosynostosis.
Synesthesia is found in at least 4.4% of the population, as a high estimate, which is equivalent to 1 in 23 people. This study had also concluded that one common form of synesthesia—grapheme-color synesthesia (colored letters and numbers) – is found in more than one percent of the population, and this latter prevalence of graphemes-color synesthesia has now been independently verified in a yet larger sample. Earlier estimates of the prevalence of synesthesia were based on "best-guess" estimations only ("e.g." 1 in 250,000) or had limitations in their methodologies because they required synesthetes to refer themselves for study ("e.g." 1 in 2000) and for this reason the authors of those studies had been moderate in their claims. Also, some individuals will not self-classify as synesthetes because they do not realize that their perceptions are different from those of everyone else.
The most common forms of synesthesia are those that trigger colors, and the most prevalent of all is day-color. Also relatively common is grapheme-color synesthesia. We can think of "prevalence" both in terms of how common is synesthesia (or different forms of synesthesia) within the population, or how common are different forms of synesthesia within synesthetes. So within synesthetes, forms of synesthesia that trigger color also appear to be the most common forms of synesthesia with a prevalence rate of 86% within synesthetes. In another study, music-color is also prevalent at 18–41%. Some of the rarest are reported to be auditory-tactile, mirror-touch, and lexical-gustatory.
There is research to suggest that the likelihood of having synesthesia is greater in people with autism.
The incidence of Fraser syndrome is 0.043 per 10,000 live born infants and 1.1 in 10,000 stillbirths, making it a rare syndrome.
In most cases Ballantyne syndrome causes fetal or neonatal death and in contrast, maternal involvement is limited at the most to preeclampsia.