Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
CHILD syndrome occurs almost exclusively in females. Only 2 known cases have been reported in males, one having a normal 46,XY karyotype, suggesting an early postzygotic somatic mutation.
CHILD syndrome is not fatal unless there are problems with the internal organs. The most common causes of early death in people with the syndrome are cardiovascular malformations. However, central nervous system, skeletal, kidney, lung, and other visceral defects also contribute significantly.
As the syndrome is due to a chromosomal non-disjunction event, the recurrence risk is not high compared to the general population. There has been no evidence found that indicates non-disjunction occurs more often in a particular family.
Kabuki syndrome (also previously known as kabuki makeup syndrome, KMS or Niikawa–Kuroki Syndrome), is a pediatric congenital disorder of suspected genetic origin with multiple congenital anomalies and intellectual disabilities. It is quite rare, affecting roughly one in 32,000 births. It was identified and described in 1981 by two Japanese groups, led by the scientists Norio Niikawa and Yoshikazu Kuroki. It is named kabuki syndrome because of the facial resemblance of affected individuals to stage makeup used in kabuki, a Japanese traditional theatrical form.
Branchio-oculo-facial syndrome is difficult to diagnose because it has incomplete penetrance. It is often misdiagnosed as branchio-oto-renal syndrome because of their similarities in symptoms.
The treatments of kabuki syndrome are still being developed due to its genetic nature. The first step to treatment is diagnosis. After diagnosis, the treatment of medical conditions can often be treated by medical intervention. There are also options in psychotherapy for young children with this disorder, as well as the family of the child. Genetic counseling is available as a preventative treatment for kabuki syndrome because it can be inherited and expressed by only having one copy of the mutated gene.
The vast majority of cases are due to spontaneous genetic mutations.
It can be associated with mutations affecting the cohesin complex.
Multiple genes have been associated with the condition. In 2004, researchers at the Children's Hospital of Philadelphia (United States) and the University of Newcastle upon Tyne (England) identified a gene (NIPBL) on chromosome 5 that causes CdLS when it is mutated. Since then, additional genes have been found (SMC1A, SMC3 and HDAC8) that cause CdLS when changed. There are likely other genes as well. Researchers hope to gain a better understanding of why CdLS varies so widely from one individual to another and what can be done to improve the quality of life for people with the syndrome.
The latter two genes seem to correlate with a milder form of the syndrome.
In July 2012, the fourth “CdLS gene”—HDAC8—was announced. Many parents and professionals have
questions about this latest finding and what it means. HDAC8 is an X-linked gene, meaning it is located on the X chromosome. Individuals with CdLS who have the gene change in HDAC8 make up just a small portion of all people with CdLS.
Evidence of a linkage at chromosome 3q26.3 is mixed.
In mild cases, individuals with XXXY syndrome may lead a relatively good life. These individuals may face difficulties in communicating with others due to their language-based deficits. These deficits may make forming bonds with others difficult, but fulfilling relationships with others are still achievable. Those with higher scores in adaptive functioning are likely to have higher quality of life because they can be independent.
A 1998 review noted that life expectancy is usually normal, but that there have occasionally been reported neonatal deaths due to PCD. A 2016 longitudinal study followed 151 adults with PCD for a median of 7 years. Within that span, 7 persons died with a median age of 65.
The Cornelia de Lange Syndrome (CdLS) Foundation is a nonprofit, family support organization based in Avon, Connecticut, that exists to ensure early and accurate diagnosis of CdLS, promote research into the causes and manifestations of the syndrome, and help people with a diagnosis of CdLS, and others with similar characteristics, make informed decisions throughout their lives.
Branchio-oculo-facial syndrome (BOFS) is a disease that arises from a mutation in the TFAP2A gene. It is a rare autosomal dominant disorder that starts to affect a child's development before birth. Symptoms of this condition include skin abnormalities on the neck, deformities of the ears and eyes, and other distinctive facial features such a cleft lip along with slow growth, mental retardation and premature graying of hair.
Prognosis varies widely depending on severity of symptoms, degree of intellectual impairment, and associated complications. Because the syndrome is rare and so newly identified, there are no long term studies.
There are estimated to be approximately 2,000 people afflicted with Hunter syndrome worldwide, 500 of whom live in the United States. There are 2 Hunter syndrome patients in New Zealand, 6 Hunter syndrome patients in Ireland, at least 1 case in Iran, 1 case in Saudi Arabia, 1 case in Chile, 1 case in Pakistan, 20 cases in the Philippines, 1 case in the West Bank (Palestine) and 70 Hunter syndrome patients reported in Korea. There is one case in the city of Kolkata and, as broadcast on local media channel CCN Siliguri on 1 April 2015, a boy in the city of Siliguri, West Bengal, India. In Gangtok, the 8-year-old son of the editor of 'Voice of Sikkim' also suffers from the disease.
A study in the United Kingdom indicated an incidence among males of approximately 1 in 130,000 male live births.
X-linked recessive inheritance is a mode of inheritance in which a mutation in a gene on the X chromosome causes the phenotype to be expressed in males (who are necessarily hemizygous for the gene mutation because they have one X and one Y chromosome) and in females who are homozygous for the gene mutation, see zygosity.
X-linked inheritance means that the gene causing the trait or the disorder is located on the X chromosome. Females have two X chromosomes, while males have one X and one Y chromosome. Carrier females who have only one copy of the mutation do not usually express the phenotype, although differences in X chromosome inactivation can lead to varying degrees of clinical expression in carrier females since some cells will express one X allele and some will express the other. The current estimate of sequenced X-linked genes is 499 and the total including vaguely defined traits is 983.
Some scholars have suggested discontinuing the terms dominant and recessive when referring to X-linked inheritance due to the multiple mechanisms that can result in the expression of X-linked traits in females, which include cell autonomous expression, skewed X-inactivation, clonal expansion, and somatic mosaicism.
The severity and prognosis vary with the type of mutation involved.
For a long time, the most efficient approach had been to use bone marrow graft, or hematopoietic stem cell transplantation. They each have the advantage of providing a new source of the missing I2S. However, the results have been considered imperfect at best.
While this treatment alternative is able to improve or stop the progression of some of the so-called "physical" symptoms, it does not prevent the eventual cognitive regression that occurs in Hunter syndrome patients who are cognitively affected, although it may slow such regression early on. Therefore, for attenuated patients, this may still serve as a viable treatment option because of its more permanent nature, possibly even equivalent to weekly enzyme replacement therapy, resulting in much improved life expectancy.
However, even for attenuated patients, it is a major intervention with significant mortality risks and potential for life-threatening or altering complications such as graft-versus-host disease. For cognitively affected patients, without solving the challenge of cognitive regression, at best it is limited as a permanent treatment alternative. Because of all these reasons, bone marrow grafts or hematopoietic stem cell transplantation have seen a decrease in their application as Hunter syndrome treatment.
Mosaic mutations in PIK3CA have been found to be the genetic cause of M-CM. Genetic testing for the mutation is currently only available on a research basis. Other overgrowth conditions with distinct phenotypes have also been found to be caused by mosaic mutations in PIK3CA. How different mutations in this gene result in a variety of defined clinical syndromes is still being clarified. Mutations in PIK3CA have not been found in a non-mosaic state in any of these disorders, so it is unlikely that the conditions could be inherited.
In humans, generally men are affected and women are carriers for two reasons. The first is the simple statistical fact that if the X-chromosomes is a population that carry a particular X-linked mutation at a frequency of 'f' (for example, 1%) then that will be the frequency that men are likely to express the mutation (since they have only one X), while women will express it at a frequency of f (for example 1% * 1% = 0.01%) since they have two X's and hence two chances to get the normal allele. Thus, X-linked mutations tend to be rare in women. The second reason for female rarity is that women who "express" the mutation must have two X chromosomes that carry the trait and they necessarily got one from their father, who would have also expressed the trait because he only had one X chromosome in the first place. If the trait lowers the probability of fathering a child or induces the father to only have children with women who aren't carriers (so as not to create daughters who are carriers rather than expressers and then only if no genetic screening is used) then women become even "less" likely to express the trait.
One 10-year-old girl with Crigler–Najjar syndrome type I was successfully treated by liver cell transplantation.
The homozygous Gunn rat, which lacks the enzyme uridine diphosphate glucuronyltransferase (UDPGT), is an animal model for the study of Crigler–Najjar syndrome. Since only one enzyme is working improperly, gene therapy for Crigler-Najjar is a theoretical option which is being investigated.
Wolcott–Rallison syndrome, WRS, is a rare, autosomal recessive disorder with infancy-onset diabetes mellitus, multiple epiphyseal dysplasia, osteopenia, mental retardation or developmental delay, and hepatic and renal dysfunction as main clinical findings. Patients with WRS have mutations in the EIF2AK3 gene, which encodes the pancreatic eukaryotic translation initiation factor 2-alpha kinase 3.
Uner Tan syndrome, Unertan syndrome or UTS is a syndrome proposed by the Turkish evolutionary biologist Üner Tan. According to Tan, persons affected by this syndrome walk with a quadrupedal locomotion and are afflicted with "primitive" speech and severe mental retardation. Tan postulated that this is an example of "reverse
Recent findings in genetic research have suggested that a large number of genetic disorders, both genetic syndromes and genetic diseases, that were not previously identified in the medical literature as related, may be, in fact, highly related in the genetypical root cause of the widely varying, phenotypically-observed disorders. Thus, PCD is a ciliopathy. Other known ciliopathies include Bardet-Biedl syndrome, polycystic kidney and liver disease, nephronophthisis, Alstrom syndrome, Meckel-Gruber syndrome and some forms of retinal degeneration.
This syndrome is inherited as an autosomal disease. It affects both males and females but the phenotype differs. In both sexes sensorineural deafness occurs but in females ovarian dysgenesis also occurs.
XX gonadal dysgenesis is a type of female hypogonadism in which no functional ovaries are present to induce puberty in an otherwise normal girl whose karyotype is found to be 46,XX. With nonfunctional "streak" ovaries she is low in estrogen levels (hypoestrogenic) and has high levels of FSH and LH. Estrogen and progesterone therapy is usually then commenced.
The Ulaş family of nineteen from rural southern Turkey has been the primary example of the proposed syndrome. Tan described five members as walking with a quadrupedal gait using their feet and the palms of their hands. In infants, where this is a rare but a normal stage prior and sometimes following bipedal walking, such a gait is called "bear crawl". The affected family members are also severely mentally retarded and their speech is affected. Tan proposed that these are symptoms of Uner Tan syndrome.
In January 2008, Tan reported on another family (four males and two females) located in southern Turkey.
Four other unrelated cases in families are described as having various degrees of UTS. Males may be affected more than females. It is also claimed that some individuals are unaware of time, lack language, have severe mental retardation with no conscious experience, and communicate by using sounds. Two males are unable to stand up, while in other cases, can stand up but cannot make a step when standing. Less severe cases use toe walking, which is a normal phase in child gait development.
The term “pure gonadal dysgenesis” (PGD) has been used to distinguish a group of patients from gonadal dysgenesis related to Turner syndrome. In the latter a distinct chromosomal aberration is present, while in PGD the chromosomal constellation is either 46,XX or 46,XY. Thus XX gonadal dysgenesis is also referred to as "PGD, 46 XX", and XY gonadal dysgenesis as "PGD, 46,XY" or Swyer syndrome. Patients with PGD have a normal chromosomal constellation but may have localized genetic alterations.