Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The specific cause of camptodactyly remains unknown, but there are a few deficiencies that lead to the condition. A deficient lumbrical muscle controlling the flexion of the fingers, and abnormalities of the flexor and extensor tendons.
A number of congenital syndromes may also cause camptodactyly:
- Jacobsen syndrome
- Beals Syndrome
- Blau syndrome
- Freeman-Sheldon syndrome
- Cerebrohepatorenal syndrome
- Weaver syndrome
- Christian syndrome 1
- Gordon Syndrome
- Jacobs arthropathy-camptodactyly syndrome
- Lenz microphthalmia syndrome
- Marshall-Smith-Weaver syndrome
- Oculo-dento-digital syndrome
- Tel Hashomer camptodactyly syndrome
- Toriello-Carey syndrome
- Stuve-Wiedemann syndrome
- Loeys-Dietz syndrome
- Fryns syndrome
- Marfan's syndrome
- Carnio-carpo-tarsal dysthropy
The pattern of inheritance is determined by the phenotypic expression of a gene—which is called "expressivity". Camptodactyly can be passed on through generations in various levels of phenotypic expression, which include both or only one hand. This means that the genetic expressivity is incomplete. It can be inherited from either parent.
In most of its cases, camptodactyly occurs sporadically, but it has been found in several studies that it is inherited as an autosomal dominant condition.
Mäkelä-Bengs et al. (1997,1998) performed a genome-wide screening and linkage analysis and assigned the LCCS locus to a defined region of 9q34.
The syndromes associated with central polydactyly are:
Bardet–Biedl syndrome,
Meckel syndrome,
Pallister–Hall syndrome,
Legius syndrome,
Holt–Oram syndrome,
Also, central polydactyly can be associated with syndactyly and cleft hand.
Other syndromes including polydactyly include acrocallosal syndrome, basal cell nevus syndrome, Biemond syndrome, ectrodactyly-ectodermal dysplasias-cleft lip/palate syndrome, mirror hand deformity, Mohr syndrome, oral-facial-digital syndrome, Rubinstein-Taybi syndrome, short rib polydactyly, and VATER association.
It can also occur with a triphalangeal thumb.
Arthrogryposis is a rare condition. Some authors say the overall prevalence is one in 3000 and others say it is one in 11000-12000 among European live births. Congenital clubfoot is the most common single contracture and its prevalence is one in 500 live births.
Lethal congenital contracture syndrome 1 (LCCS1), also called Multiple contracture syndrome, Finnish type, is an autosomal recessive genetic disorder characterized by total immobility of a fetus, detectable at around the 13th week of pregnancy. LCCS1 invariably leads to prenatal death before the 32nd gestational week. LCCS1 is one of 40 Finnish heritage diseases. It was first described in 1985 and since then, approximately 70 cases have been diagnosed.
There is no single factor that is consistently found in the prenatal history of individuals affected with amyoplasia and, in some cases, there is no known cause of the disorder.
Amyoplasia is a sporadic condition that occurs due to lack of fetal movement in the womb. There is no specific gene that is known to cause the disorder. It is thought to be multifactorial, meaning that numerous genes and environmental factors play a role in its development. The recurrence risk is minimal for siblings or children of affected individuals. There have been no reports of recurrent cases of amyoplasia in a family.
The fetal akinesia in amyoplasia is thought to be caused by various maternal and fetal abnormalities. In some cases, the mother's uterus does not allow for adequate fetal movement because of a lack of amniotic fluid, known as oligohydramnios, or an abnormal shape to the uterus, called a bicornuate uterus.
There may also be a myogenic cause to the fetal akinesia, meaning that fetal muscles do not develop properly due to a muscle disease (for example, a congenital muscular dystrophy). Similarly, connective tissue tendon and skeletal defects may contribute to the fetal akinesia and be the primary cause of amyoplasia. Additionally, malformations may occur in the central nervous system and/or spinal cord that can lead to a lack of fetal movement in utero. This neurogenic cause is often accompanied by a wide range of other conditions. Other causes of fetal akinesia may include a maternal fever during pregnancy or a virus.
Cooks syndrome is a hereditary disorder which is characterized in the hands by bilateral nail hypoplasia on the thumb, index finger, and middle finger, absence of fingernails (anonychia) on the ring finger and little finger, lengthening of the thumbs, and bulbousness of the fingers. In the feet, it is characterized by absence of toenails and absence/hypoplasia of the distal phalanges. In the second study of this disorder, it was found that the intermediate phalanges, proximal phalanges, and metacarpals were unaffected.
The disorder was first described by Cooks "et al." in 1985 after being discovered in two generations of one family. It was proposed that the inheritance of the disorder is autosomal dominant. A second family, this with three affected generations, confirmed that the inheritance of the disorder is autosomal dominant. Although several genetic disorders exist which can cause anonychia and onychodystrophy, such disorders often cause other anomalies such as deafness, mental retardation, and defects of the hair, eyes, and teeth. Cooks syndrome is not known to cause any such anomalies.
In 1999, a pair of siblings was found with brachydactyly type B. Because the disorder primarily affected the nails and distal phalanges, the research group concluded that brachydactyly type B and Cooks syndrome are the same disorder. However, in 2007, a 2-year-old girl was found with symptoms consistent with both brachydactyly type B and Cooks syndrome. It was found that the two syndromes were distinct clinically, radiologically, and genetically.
Type VII of radial polydactyly is associated with several syndromes:
Holt–Oram syndrome, Fanconi anemia (aplastic anemia by the age of 6), Townes–Brocks syndrome, and Greig cephalopolysyndactyly (also known to occur with ulnar polydactyly).
Surgery may be necessary to address the congenital deformities frequently occurring in conjunction with arthrogryposis. Surgery on feet, knees, hips, elbows and wrists may also be useful if more range of motion is needed after therapy has achieved maximum results. In some cases, tendon transfers can improve function. Congenital deformities of the feet, hips and spine may require surgical correction at or about one year of age.
There is no treatment for FTHS, though identification of TKS4 mutation as a causative factor may eventually provide new opportunities for neonatal screening in high-risk families.
Both autosomal dominant and recessive forms of Larsen syndrome have been reported. The former is significantly more common than the latter. Symptoms such as syndactyly, cleft palate, short stature, and cardiac defects are seen more commonly in individuals with the autosomal recessive form of the disorder. A lethal form of the disorder has been reported it is described as being a combination of the Larsen phenotype and pulmonary hypoplasia.
By 1990, 65 patients had been reported in the literature, with no sex or ethnic preference notable. Some individuals present with minimal malformation; rarely patients have died during infancy as a result of severe central nervous system involvement or respiratory complications. Several syndromes are related to the Freeman–Sheldon syndrome spectrum, but more information is required before undertaking such nosological delineation.
70-80% of the cases of the most severe forms of arthrogryposis are caused by neurological abnormalities, which can be either genetic or environmental.
The underlying aetiology and pathogenesis of congenital contractures, particularly arthrogryposis and the mechanism of the mutations remains an active area of investigation. Because identifying these factors could help to develop treatment and congenital finding of arthrogryposis.
Filamins are cytoplasmic proteins that regulate the structure and activity of the cytoskeleton. These proteins serve as scaffolds on which intracellular signaling and protein trafficking are organized. Filamin B has been found to be expressed in human growth plate chondrocytes, which are especially important in vertebrae segmentation and skeleton morphogenesis. Genetic analysis of patients with Larsen syndrome has found the syndrome is caused by missense mutations in the gene that codes for filamin B. These mutations cause an accelerated rate of apoptosis in the epiphyseal growth plates of individuals with the mutation. The defects can cause short stature and other symptoms associated with Larsen syndrome.
There are little data on prognosis. Rarely, some patients have died in infancy from respiratory failure; otherwise, life expectancy is considered to be normal.
"Infant’s persistent thumb-clutched hand, flexion-adduction deformity of the thumb, pollex varus, thumb in the hand deformity."
Congenital clasped thumb describes an anomaly which is characterized by a fixed thumb into the palm at the metacarpophalangeal joint in one or both hands.
The incidence and genetic background are unknown. A study of Weckesser et al. showed that boys are twice as often affected with congenital clasped thumb compared to girls. The anomaly is in most cases bilateral (present in both hands).
A congenital clasped thumb can be an isolated anomaly, but can also be attributed to several syndromes.
Frank ter Haar-syndrome (FTHS), also known as Ter Haar-syndrome, is a rare disease characterized by abnormalities that affect bone, heart, and eye development. Children born with the disease usually die very young.
Diagnosing the congenital clasped thumb is difficult in the first three to four months of life, as it is normal when the thumb is clutched into the palm in these first months.
Diagnoses that cause the same flexion or adduction abnormalities of the thumb are:
- Congenital clasped thumb
- Congenital Trigger thumb (flexion of the interphalangeal joint) - Trigger finger
- Spasticity: overstimulation of muscles
Syndrome associated flexion-adduction of the thumb:
- Freeman-Sheldon syndrome (a congenital, heritable affection of the face, the hands, the feet and some joints)
- Distal arthrogryposis
- MASA syndrome
- X-linked hydrocephalus
- Adducted thumb syndrome
- Waardenburg syndrome
- Whistling face syndrome (Freeman-Sheldon syndrome)
- Digitotalar dysmorphism
- Multiple pterygium syndrome
Cohen syndrome (also known as Pepper syndrome or Cervenka syndrome, named after Michael Cohen, William Pepper and Jaroslav Cervenka, who researched the illness) is a genetic disorder.
Radial dysplasia, also known as radial club hand or radial longitudinal deficiency, is a congenital difference occurring in a longitudinal direction resulting in radial deviation of the wrist and shortening of the forearm. It can occur in different ways, from a minor anomaly to complete absence of the radius, radial side of the carpal bones and thumb. Hypoplasia of the distal humerus may be present as well and can lead to stiffnes of the elbow. Radial deviation of the wrist is caused by lack of support to the carpus, radial deviation may be reinforced if forearm muscles are functioning poorly or have abnormal insertions. Although radial longitudinal deficiency is often bilateral, the extent of involvement is most often asymmetric.
The incidence is between 1:30,000 and 1:100,000 and it is more often a sporadic mutation rather than an inherited condition. In case of an inherited condition, several syndromes are known for an association with radial dysplasia, such as the cardiovascular Holt-Oram syndrome, the gastrointestinal VATER syndrome and the hematologic Fanconi anemia and TAR syndrome. Other possible causes are an injury to the apical ectodermal ridge during upper limb development, intrauterine compression, or maternal drug use (thalidomide).
One case of Cohen Syndrome, in a Palestinian boy from Tul-Karem, was reported in the Israeli monthly Kol Israel BeAsakim (in Hebrew) in the December 2007 issue. Over the past several years there have been approximately 50 new cases worldwide. There are population groups with this condition in Australia, the UK and the US. It still seems to go undiagnosed leaving the number of cases less than 500.
Pelger–Huët anomaly (pronunciation: [pel′gər hyo̅o̅′ət]) is a blood laminopathy associated with the lamin B receptor.
It is characterized by a white blood cell type known as a neutrophil whose nucleus is hyposegmented.
It is a genetic disorder with an autosomal dominant inheritance pattern. Heterozygotes are clinically normal, although their neutrophils may be mistaken for immature cells which may cause mistreatment in a clinical setting. Homozygotes tend to have neutrophils with rounded nuclei that do have some functional problems.
LIG4 syndrome (also known as Ligase IV syndrome) is an extremely rare condition caused by mutations in the DNA Ligase IV (LIG4) gene. Some mutations in this gene are associated with a resistance against multiple myeloma and Severe Combined Immunodeficiency. Severity of symptoms depends on the degree of reduced enzymatic activity of Ligase IV or gene expression.
As DNA ligase IV is essential in V(D)J recombination, the mechanism by which immunoglobulins, B cell and T cell receptors are formed, patients with LIG4 syndrome may suffer from less effective or defective V(D)J recombination. Some patients have a severe immunodeficiency characterized by pancytopenia, causing chronic respiratory infections and sinusitis. Clinical features also include Seckel syndrome-like facial abnormalities and microcephaly. Patients also suffer from growth retardation and skin conditions, including photosensitivity, psoriasis and telangiectasia. Although not present in all, patients may also present with hypothyroidism and type II diabetes and possibly malignancies such as acute T-cell leukemia. The clinical phenotype of LIG4 syndrome closely resembles that of Nijmegen breakage syndrome (NBS).
Is a benign dominantly inherited defect of terminal neutrophil differentiation as a result of mutations in the lamin B receptor gene. The characteristic leukocyte appearance was first reported in 1928 by Karel Pelger (1885-1931), a Dutch Hematologist, who described leukocytes with dumbbell-shaped bilobed nuclei, a reduced number of nuclear segments, and coarse clumping of the nuclear chromatin. In 1931, Gauthier Jean Huet (1879-1970), a Dutch Pediatrician, identified it as an inherited disorder.
It is a genetic disorder with an autosomal dominant inheritance pattern. Heterozygotes are clinically normal, although their neutrophils may be mistaken for immature cells, which may cause mistreatment in a clinical setting. Homozygotes tend to have neutrophils with rounded nuclei that do have some functional problems. Homozygous individuals inconsistently have skeletal anomalies such as post-axial polydactyly, short metacarpals, short upper limbs, short stature, or hyperkyphosis.
Identifying Pelger–Huët anomaly is important to differentiate from bandemia with a left-shifted peripheral blood smear and neutrophilic band forms and from an increase in young neutrophilic forms that can be observed in association with infection.