Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
While some investigations suggest a possible beneficial effect of mesenchymal stem cells on heart and kidney reperfusion injury, to date, none have explored the role of stem cells in muscle tissue exposed to ischemia-reperfusion injury.
Stem cells have been implicated in the regeneration of skeletal muscle after traumatic and blast injuries, and have been shown to hone to muscle damaged after exercise.
Serum lactate level is a proxy measure of tissue oxygenation. When tissues do not have adequate oxygen delivery (i.e., are ischemic), they revert to less efficient metabolic processes, producing lactic acid.
Myoglobin is released from damaged muscle, as in the case of ischemia.
Serum creatinine and BUN may be elevated in the setting of Acute Kidney Injury.
A series of 2009 studies published in the Journal of Cardiovascular Pharmacology suggest that Metformin may prevent cardiac reperfusion injury by inhibition of Mitochondrial Complex I and the opening of MPT pore and in rats.
A study of aortic cross-clamping, a common procedure in cardiac surgery, demonstrated a strong potential benefit with further research ongoing.
With treatment, approximately 80% of patients are alive (approx. 95% after surgery) and approximately 70% of infarcted limbs remain vital after 6 months.
Traumatic injury to an extremity may produce partial or total occlusion of a vessel from compression, shearing or laceration. Acute arterial occlusion may develop as a result of arterial dissection in the carotid artery or aorta or as a result of iatrogenic arterial injury (e.g., after angiography).
An inadequate flow of blood to a part of the body may be caused by any of the following:
- Thoracic outlet syndrome (compression of the brachial plexus)
- Atherosclerosis (lipid-laden plaques obstructing the lumen of arteries)
- Hypoglycemia (lower than normal level of glucose)
- Tachycardia (abnormally rapid beating of the heart)
- Radiotherapy
- Hypotension (low blood pressure, e.g. in septic shock, heart failure)
- Outside compression of a blood vessel, e.g. by a tumor or in the case of superior mesenteric artery syndrome
- Sickle cell disease (abnormally shaped red blood cells)
- Induced g-forces which restrict the blood flow and force the blood to the extremities of the body, as in acrobatics and military flying
- Localized extreme cold, such as by frostbite or improper cold compression therapy
- Tourniquet application
- An increased level of glutamate receptor stimulation
- Arteriovenous malformations, and peripheral artery occlusive disease
- rupture of significant blood vessels supplying a tissue or organ.
- Anemia vasoconstricts the periphery so that red blood cells can work internally on vital organs such as the heart, brain, etc., thus causing lack of oxygen to the periphery.
- Premature discontinuation of any oral anticoagulant.
- Unconsciousness, such as due to the ingestion of excessive doses of central depressants like alcohol or opioids, can result in ischemia of the extremities due to unusual body positions that prevent normal circulation
Causes include:
- Thrombosis (approximately 40% of cases)
- Arterial embolism (approximately 40%)
- arteriosclerosis obliterans
Another cause of limb infarction is "skeletal muscle infarction" as a rare complication of long standing, poorly controlled diabetes mellitus.
The ischemic (ischaemic) cascade is a series of biochemical reactions that are initiated in the brain and other aerobic tissues after seconds to minutes of ischemia (inadequate blood supply). This is typically secondary to stroke, injury, or cardiac arrest due to heart attack. Most ischemic neurons that die do so due to the activation of chemicals produced during and after ischemia. The ischemic cascade usually goes on for two to three hours but can last for days, even after normal blood flow returns.
A cascade is a series of events in which one event triggers the next, in a linear fashion. Thus "ischemic cascade" is actually a misnomer, since the events are not always linear: in some cases they are circular, and sometimes one event can cause or be caused by multiple events. In addition, cells receiving different amounts of blood may go through different chemical processes. Despite these facts, the ischemic cascade can be generally characterized as follows:
1. Lack of oxygen causes the neuron's normal process for making ATP for energy to fail.
2. The cell switches to anaerobic metabolism, producing lactic acid.
3. ATP-reliant ion transport pumps fail, causing the cell to become depolarized, allowing ions, including calcium (Ca), to flow into the cell.
4. The ion pumps can no longer transport calcium out of the cell, and intracellular calcium levels get too high.
5. The presence of calcium triggers the release of the excitatory amino acid neurotransmitter glutamate.
6. Glutamate stimulates AMPA receptors and Ca-permeable NMDA receptors, which open to allow more calcium into cells.
7. Excess calcium entry overexcites cells and causes the generation of harmful chemicals like free radicals, reactive oxygen species and calcium-dependent enzymes such as calpain, endonucleases, ATPases, and phospholipases in a process called excitotoxicity. Calcium can also cause the release of more glutamate.
8. As the cell's membrane is broken down by phospholipases, it becomes more permeable, and more ions and harmful chemicals flow into the cell.
9. Mitochondria break down, releasing toxins and apoptotic factors into the cell.
10. The caspase-dependent apoptosis cascade is initiated, causing cells to "commit suicide."
11. If the cell dies through necrosis, it releases glutamate and toxic chemicals into the environment around it. Toxins poison nearby neurons, and glutamate can overexcite them.
12. If and when the brain is reperfused, a number of factors lead to reperfusion injury.
13. An inflammatory response is mounted, and phagocytic cells engulf damaged but still viable tissue.
14. Harmful chemicals damage the blood–brain barrier.
15. Cerebral edema (swelling of the brain) occurs due to leakage of large molecules like albumins from blood vessels through the damaged blood brain barrier. These large molecules pull water into the brain tissue after them by osmosis. This "vasogenic edema" causes compression of and damage to brain tissue (Freye 2011; Acquired Mitochondropathy-A New Paradigm in Western Medicine Explaining Chronic Diseases).
The fact that the ischemic cascade involves a number of steps has led doctors to suspect that neuroprotectants such as calcium channel blockers or glutamate antagonists could be produced to interrupt the cascade at a single one of the steps, blocking the downstream effects. Though initial trials for such neuroprotective drugs led many to be hopeful, until recently, human clinical trials with neuroprotectants such as NMDA receptor antagonists were unsuccessful.
On October 7, 2003, a U.S. patent number 6630507 entitled "Cannabinoids as Antioxidants and Neuroprotectants" was awarded to the United States Department of Health and Human Services, based on research carried out at the National Institute of Mental Health (NIMH), and the National Institute of Neurological Disorders and Stroke (NINDS). This patent claims that cannabinoids are "useful in the treatment and prophylaxis of wide variety of oxidation associated diseases such as ischemia, inflammatory ... and autoimmune diseases. The cannabinoids are found to have particular application as neuroprotectants, for example in limiting neurological damage following ischemic insults, such as stroke and trauma..."
On November 17, 2011, in accordance with 35 U.S.C. 209(c)(1) and 37 CFR part 404.7(a)(1)(i), the National Institutes of Health, Department of Health and Human Services, published in the Federal Register, that it is contemplating the grant of an exclusive patent license to practice the invention embodied in U.S. Patent 6,630,507, entitled “Cannabinoids as antioxidants and neuroprotectants” and PCT Application Serial No. PCT/US99/08769 and foreign equivalents thereof, entitled “Cannabinoids as antioxidants and neuroprotectants” [HHS Ref. No. E-287-1997/2] to KannaLife Sciences Inc., which has offices in New York, U.S. This patent and its foreign counterparts have been assigned to the Government of the United States of America. The prospective exclusive license territory may be worldwide, and the field of use may be limited to: The development and sale of cannabinoid(s) and cannabidiol(s) based therapeutics as antioxidants and neuroprotectants for use and delivery in humans, for the treatment of hepatic encephalopathy, as claimed in the Licensed Patent Rights.
Seigo Minami, a Japanese physician, first reported the crush syndrome in 1923. He studied the pathology of three soldiers who died in World War I from insufficiency of the kidney. The renal changes were due to methemoglobin infarction, resulting from the destruction of muscles, which is also seen in persons who are buried alive. The progressive acute renal failure is because of acute tubular necrosis.
The syndrome was later described by British physician Eric Bywaters in patients during the 1941 London Blitz. It is a reperfusion injury that appears after the release of the crushing pressure. The mechanism is believed to be the release into the bloodstream of muscle breakdown products—notably myoglobin, potassium and phosphorus—that are the products of rhabdomyolysis (the breakdown of skeletal muscle damaged by ischemic conditions).
The specific action on the kidneys is not understood completely, but may be due partly to nephrotoxic metabolites of myoglobin.
The most devastating systemic effects can occur when the crushing pressure is suddenly released, without proper preparation of the patient, causing reperfusion syndrome. In addition to tissue directly suffering the crush mechanism, down stream tissue is subject to Ischemia-reperfusion injuries of the appendicular musculoskeletal system. Without proper preparation, the patient, with pain control, may be cheerful before extrication, but die shortly thereafter. This sudden decompensation is called the "smiling death."
These systemic effects are caused by a traumatic rhabdomyolysis. As muscle cells die, they absorb sodium, water and calcium; the rhabdomyolysis releases potassium, myoglobin, phosphate, thromboplastin, creatine and creatine kinase.
Compartment syndrome can be secondary to crush syndrome. Monitor for the classic 5 Ps: pain, pallor, parasthesias, pain with passive movement, and pulselessness.
Due to the risk of crush syndrome, current recommendation to lay first-aiders (in the UK) is to not release victims of crush injury who have been trapped for more than 15 minutes. Treatment consists of not releasing the tourniquet and fluid overloading the patient with added Dextran 4000 iu and slow release of pressure. If pressure is released during first aid then fluid is restricted and an input-output chart for the patient is maintained, and proteins are decreased in the diet.
The Australian Resuscitation Council recommended in March 2001 that first-aiders in Australia, where safe to do so, release the crushing pressure as soon as possible, avoid using a tourniquet and continually monitor the vital signs of the patient. St John Ambulance Australia First Responders are trained in the same manner.
Compartment syndrome is a condition in which increased pressure within one of the body's compartments results in insufficient blood supply to tissue within that space. There are two main types: acute and chronic. The leg or arm are most commonly involved.
Symptoms of acute compartment syndrome may include severe pain, poor pulses, decreased ability to move, numbness, or a pale color of the affected limb. It is most commonly due to physical trauma such as a bone fracture or crush injury. It can also occur after blood flow returns following a period of poor blood flow. Diagnosis is generally based upon a person's symptoms. Treatment is by surgery to open the compartment performed in a timely manner. If not treated within six hours, permanent muscle or nerve damage can result.
In chronic compartment syndrome there is generally pain with exercise. Other symptoms may include numbness. Symptoms typically resolve with rest. Common activities that trigger it include running and biking. It does not generally result in permanent damage. Other conditions that may present similarly include stress fractures and tendinitis. Treatment may include physical therapy or if that is not effective surgery.
Acute compartment syndrome occurs in about 3% of those who have a midshaft fracture of the forearm. Rates in other areas and for chronic cases is unknown. The condition more often occurs in those under the age of 35 and in males. Compartment syndrome was first described in 1881 by Richard von Volkmann. Untreated, acute compartment syndrome can result in Volkmann's contracture.
The prognosis depends on prompt diagnosis (less than 12–24 hours and before gangrene) and the underlying cause:
- venous thrombosis: 32% mortality
- arterial embolism: 54% mortality
- arterial thrombosis: 77% mortality
- non-occlusive ischemia: 73% mortality.
In the case of prompt diagnosis and therapy, acute mesenteric ischemia can be reversible.
Phlegmasia alba dolens (also colloquially known as milk leg or white leg) is part of a spectrum of diseases related to deep vein thrombosis. Historically, it was commonly seen during pregnancy and in mothers who have just given birth. In cases of pregnancy, it is most often seen during the third trimester, resulting from a compression of the left common iliac vein against the pelvic rim by the enlarged uterus. Today, this disease is most commonly (40% of the time) related to some form of underlying malignancy. Hypercoagulability (a propensity to clot formation) is a well-known state that occurs in many cancer states. The incidence of this disease is not well reported.
Blue toe syndrome is a situation that may reflect atherothrombotic microembolism, causing transient focal ischaemia, occasionally with minor apparent tissue loss, but without diffuse forefoot ischemia. The development of blue or violaceous toes can also occur with trauma, cold-induced injury, disorders producing generalized cyanosis, decreased arterial flow, impaired venous outflow, and abnormal circulating blood.
The terms "blue toe syndrome", "grey toe syndrome" and "purple toe syndrome" are sometimes used interchangeably.
Studies may include echocardiography, thoracic and abdominal CT or MRI, peripheral arterial run off imaging studies, hypercoagulopathy labs, and interrogation of syndromes that lead to peripheral vascular pathology.
According to a review of 51 studies from 21 countries, the average incidence of subarachnoid hemorrhage is 9.1 per 100,000 annually. Studies from Japan and Finland show higher rates in those countries (22.7 and 19.7, respectively), for reasons that are not entirely understood. South and Central America, in contrast, have a rate of 4.2 per 100,000 on average.
Although the group of people at risk for SAH is younger than the population usually affected by stroke, the risk still increases with age. Young people are much less likely than middle-age people (risk ratio 0.1, or 10 percent) to have a subarachnoid hemorrhage. The risk continues to rise with age and is 60 percent higher in the very elderly (over 85) than in those between 45 and 55. Risk of SAH is about 25 percent higher in women over 55 compared to men the same age, probably reflecting the hormonal changes that result from the menopause, such as a decrease in estrogen levels.
Genetics may play a role in a person's disposition to SAH; risk is increased three- to fivefold in first-degree relatives of people having had a subarachnoid hemorrhage. However, lifestyle factors are more important in determining overall risk. These risk factors are smoking, hypertension (high blood pressure), and excessive alcohol consumption. Having smoked in the past confers a doubled risk of SAH compared to those who have never smoked. Some protection of uncertain significance is conferred by caucasian ethnicity, hormone replacement therapy, and diabetes mellitus. There is likely an inverse relationship between total serum cholesterol and the risk of non-traumatic SAH, though confirmation of this association is hindered by a lack of studies. Approximately 4 percent of aneurysmal bleeds occur after sexual intercourse and 10 percent of people with SAH are bending over or lifting heavy objects at the onset of their symptoms.
Overall, about 1 percent of all people have one or more cerebral aneurysms. Most of these, however, are small and unlikely to rupture.
In addition to sepsis, distributive shock can be caused by systemic inflammatory response syndrome (SIRS) due to conditions other than infection such as pancreatitis, burns or trauma. Other causes include, toxic shock syndrome (TSS), anaphylaxis (a sudden, severe allergic reaction), adrenal insufficiency, reactions to drugs or toxins, heavy metal poisoning, hepatic (liver) insufficiency and damage to the central nervous system. Causes of adrenal insufficiency leading to distributive shock include acute worsening of chronic adrenal insufficiency, destruction or removal of the adrenal glands, suppression of adrenal gland function due to exogenous steroids, hypopituitarism and metabolic failure of hormone production.
Because the fascia layer that defines the compartment does not stretch, a small amount of bleeding into the compartment, or swelling of the muscles within the compartment, can cause the pressure to rise greatly. Common causes of compartment syndrome include tibial or forearm fractures, ischemic reperfusion following injury, hemorrhage, vascular puncture, intravenous drug injection, casts, prolonged limb compression, crush injuries and eschars from burns. Less common causes include labor and delivery following uncomplicated births and C-sections.
Compartment syndrome can also occur following surgery in the Lloyd-Davies lithotomy position, where the patient's legs are elevated for prolonged periods. As of February 2001, any surgery that is expected to take longer than six hours to complete must include compartment syndrome on its list of post-operative complications. The Lloyd Davis lithotomy position can cause extra pressure on the calves and on the intermittent pneumatic compression device worn by the patient.
Cerebral edema is excess accumulation of fluid in the intracellular or extracellular spaces of the brain.
Nontraumatic intraparenchymal hemorrhage most commonly results from hypertensive damage to blood vessel walls e.g.:
- hypertension
- eclampsia
- drug abuse,
but it also may be due to autoregulatory dysfunction with excessive cerebral blood flow e.g.:
- reperfusion injury
- hemorrhagic transformation
- cold exposure
- rupture of an aneurysm or arteriovenous malformation (AVM)
- arteriopathy (e.g. cerebral amyloid angiopathy, moyamoya)
- altered hemostasis (e.g. thrombolysis, anticoagulation, bleeding diathesis)
- hemorrhagic necrosis (e.g. tumor, infection)
- venous outflow obstruction (e.g. cerebral venous sinus thrombosis).
Nonpenetrating and penetrating cranial trauma can also be common causes of intracerebral hemorrhage.
Cerebral edema can result from brain trauma or from nontraumatic causes such as ischemic stroke, cancer, or brain inflammation due to meningitis or encephalitis.
Vasogenic edema caused by amyloid-modifying treatments, such as monoclonal antibodies, is known as ARIA-E (amyloid-related imaging abnormalities edema).
The blood–brain barrier (BBB) or the blood–cerebrospinal fluid (CSF) barrier may break down, allowing fluid to accumulate in the brain's extracellular space.
Altered metabolism may cause brain cells to retain water, and dilution of the blood plasma may cause excess water to move into brain cells.
Fast travel to high altitude without proper acclimatization can cause high-altitude cerebral edema (HACE).
Neurocognitive symptoms, such as fatigue, mood disturbances, and other related symptoms are common sequelae. Even in those who have made good neurological recovery, anxiety, depression, posttraumatic stress disorder, and cognitive impairment are common; 46 percent of people who have had a subarachnoid hemorrhage have cognitive impairment that affects their quality of life. Over 60 percent report frequent headaches. Aneurysmal subarachnoid hemorrhage may lead to damage of the hypothalamus and the pituitary gland, two areas of the brain that play a central role in hormonal regulation and production. More than a quarter of people with a previous SAH may develop hypopituitarism (deficiencies in one or more of the hypothalamic-pituitary hormones such as growth hormone, luteinizing hormone, or follicle-stimulating hormone).
Distributive shock is a medical condition in which abnormal distribution of blood flow in the smallest blood vessels results in inadequate supply of blood to the body's tissues and organs. It is one of four categories of shock, a condition where there is not enough oxygen-carrying blood to meet the metabolic needs of the cells which make up the body's tissues and organs. Distributive shock is different from the other three categories of shock in that it occurs even though the output of the heart is at or above a normal level. The most common cause is sepsis leading to type of distributive shock called septic shock, a condition that can be fatal.
Cortical necrosis is a severe and life-threatening condition, with mortality rates over 50%. Those mortality rates are even higher in neonates with the condition due to the overall difficult nature of neonatal care and an increased frequency of comorbid conditions. The extent of the necrosis is a major determinant of the prognosis, which in turn is dependent on the duration of ischemia, duration of oliguria, and the severity of the precipitating conditions. Of those that survive the initial event, there are varying degrees of recovery possible, depending on the extent of the damage.