Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The disease is chronic and often progresses slowly. Prognosis is generally poor when associated with glaucoma [1,2].
Keratopathy is common in older people. Keratopathy occurs after cataract surgery, its incidence has decreased since the advent of intraoperative viscoelastic agents that protect the endothelium.
CNV causes may be congenital in nature, such as with Aniridia, or acquired. Frequently, inflammatory, infectious, degenerative, traumatic and iatrogenic (from contact lenses) diseases are responsible for acquired CNV.
Some major associated, acquired inflammatory conditions include graft rejection following keratoplasty, graft or host diseases of the new tissue, atopic conjunctivitis, rosacea, ocular pemphigoid, Lyell's syndrome, and Steven's Johnson syndrome.
Infections responsible for CNV range from bacterial (chlamydia, syphilis, pseduomonas), Viral (herpes simplex and herpes zoster viruses), Fungal (candida, asperigillus, fusarium), and parasistic (onchocerca volvolus).
Degenerative diseases such as pterygiums, and terrien's marginal degeneration may be responsible.
Traumas frequently seen with CNV include ulceration, alkali burns, and stem cell deficiency.
One of the most common causes of corneal neovascularization is iastrogenic pathology from contact lens wear. This is especially true of lenses made with older hydrogel materials such as HEMA (2-hydroxyethyl methacrylate) for both daily and extended wear. Such older hydrogel materials have a relatively low oxygen transmissibility so the cornea becomes starved of oxygen leading to the ingress of blood capillaries into the clear cornea to satisfy that oxygen demand. Older estimates have 128,000 to 470,000 cases of lens-induced CNV each year, but this may be decreasing due to the increasing popularity of daily disposable lenses.
The risk for CNV is elevated in certain instances for patients following penetrating keratoplasty without active inflammation or epithelial defects. CNV is more likely to occur in those with active blepharitis, those who receive sutured knots in their host stromas, and those with a large recipient area.
Iridocorneal Endothelial (ICE) syndromes are a spectrum of diseases characteriezed by slowly progressive abnormalities of the corneal endothelium and features including corneal edema, iris distortion, and secondary angle-closure glaucoma. [1,2,4] ICE syndromes are predominantly unilateral and nonhereditary [1,2,4]. The condition occurs in predominantly middle-aged women [1,3,4].
Few studies have examined the prevalence of FCED on a large scale. First assessed in a clinical setting, Fuchs himself estimated the occurrence of dystrophia epithelialis corneae to be one in every 2000 patients; a rate that is likely reflective of those who progress to advanced disease. Cross-sectional studies suggest a relatively higher prevalence of disease in European countries relative to other areas of the world. Fuchs' dystrophy rarely affects individuals under 50 years of age.
Disease begins with vesicles that coalesce. There is severe progressing edema and rupture may occur in 24 hours or less.
Despite its name, the "presumed" relationship of POHS to "Histoplasma capsulatum" is controversial. The fungus has rarely been isolated from cases with POHS, the condition has also been found in locations where histoplasmosis is rare, and there appears to be a relationship with tobacco smoking.
Posterior Polymorphous Corneal Dystrophy (PPCD; sometimes also "Schlichting dystrophy") is a type of corneal dystrophy, characterised by changes in Descemet's membrane and endothelial layer. Symptoms mainly consist of decreased vision due to corneal edema. In some cases they are present from birth, other patients are asymptomatic. Histopathological analysis shows that the cells of endothelium have some characteristics of epithelial cells and have become multilayered. The disease was first described in 1916 by Koeppe as "keratitis bullosa interna".
PPCD type 2 is linked to the mutations in COL8A2, and PPCD type 3 mutations in ZEB1 gene, but the underlying genetic disturbance in PPCD type 1 is unknown.
Presumed ocular histoplasmosis syndrome (POHS) is a syndrome affecting the eye, which is characterized by peripheral atrophic chorioretinal scars, atrophy or scarring adjacent to the optic disc and maculopathy.
The loss of vision in POHS is caused by choroidal neovascularization.
CNV can occur rapidly in individuals with defects in Bruch's membrane, the innermost layer of the choroid. It is also associated with excessive amounts of Vascular endothelial growth factor (VEGF). As well as in wet macular degeneration, CNV can also occur frequently with the rare genetic disease pseudoxanthoma elasticum and rarely with the more common optic disc drusen. CNV has also been associated with extreme myopia or malignant myopic degeneration, where in choroidal neovascularization occurs primarily in the presence of cracks within the retinal (specifically) macular tissue known as lacquer cracks.
CNV is conventionally treated with intravitreal injections of angiogenesis inhibitors (also known as "anti-VEGF" drugs) to control neovascularization and reduce the area of fluid below the retinal pigment epithelium. Angiogenesis inhibitors include pegaptanib, ranibizumab and bevacizumab (known by a variety of trade names, such as Macugen, Avastin or Lucentis). These inhibitors slow or stop the formation of new blood vessels (angiogenesis), typically by binding to or deactivating the transmission of vascular endothelial growth factor ('VEGF'), a signal protein produced by cells to stimulate formation of new blood vessels. The effectiveness of angiogenesis inhibitors has been shown to significantly improve visual prognosis with CNV, the recurrence rate for these neovascular areas remains high.
CNV may also be treated with photodynamic therapy coupled with a photosensitive drug such as verteporfin (Visudyne). The drug is given intravenously. It is then activated in the eye by a laser light. The drug destroys the new blood vessels, and prevents any new vessels forming by forming thrombi.
Corneal neovascularization (CNV) is the in-growth of new blood vessels from the pericorneal plexus into avascular corneal tissue as a result of oxygen deprivation. Maintaining avascularity of the corneal stroma is an important aspect of corneal pathophysiology as it is required for corneal transparency and optimal vision. A decrease in corneal transparency causes visual acuity deterioration. Corneal tissue is avascular in nature and the presence of vascularization, which can be deep or superficial, is always pathologically related.
Corneal neovascularization is a sight-threatening condition that can be caused by inflammation related to infection, chemical injury, autoimmune conditions, post-corneal transplantation, and traumatic conditions among other ocular pathologies. Common causes of CNV within the cornea include trachoma, corneal ulcers, phylctenular keratoconjunctivitis, rosacea keratitis, interstitial keratitis, sclerosing keratitis, chemical burns, and wearing contact lenses for over-extended periods of time. Superficial presentations of CNV are usually associated with contact lens wear, while deep presentations may be caused by chronic inflammatory and anterior segment ocular diseases.
Corneal neovascularization is becoming increasingly common worldwide with an estimated incidence rate of 1.4 million cases per year, according to a 1998 study by the Massachusetts Eye and Ear Infirmary. The same study found that the tissue from twenty percent of corneas examined during corneal transplantations had some degree of neovascularization, negatively impacting the prognosis for individuals undergoing keratoplasty procedures.
FCED is a degenerative disease of the corneal endothelium with accumulation of focal outgrowths called guttae (drops) and thickening of Descemet's membrane, leading to corneal edema and loss of vision. The corneal endothelial cell layer and its basement membrane (Descemet's membrane) acts as a barrier to hydration of the corneal stroma by aqueous humor and are "pump" cells of the cornea that function to maintain hydration of the cornea at a specific level that maintains corneal stromal clarity through precise spatial arrangement of collagen fibers. In FED, Descemet's membrane is grossly thickened with accumulation of abnormal wide-spaced collagen and numerous guttae. Corneal endothelial cells in end-stage FED are reduced in number and appear attenuated, causing progressive stromal edema (swelling). Progressive endothelial cell loss causes relative influx of aqueous humor into the cornea, leading to swelling (corneal stromal edema), which results in blurred vision. Eventually, the epithelium also becomes edematous, resulting in more severe visual impairment. Focal blisters of epithelial edema ("bullae") may be particularly painful when they burst.
The inheritance of FCED is complex and polymorphic such that although inheritance is autosomal dominant there are genetic and environmental modifiers that determine the degree to which member of the same family express the disease. There is reasonable evidence of associations between transcription factor 4 (TCF4) genetic polymorphisms and risk of Fuchs' endothelial dystrophy (FED). Endothelial cell loss may be aggravated or accelerated by intraocular trauma or surgery. A common scenario involves prolonged corneal swelling or edema following cataract surgery or other types of ocular surgery. Hence, patients with a history of Fuchs' dystrophy may be at a greater risk of corneal edema after ocular surgery as they have fewer functioning endothelial cells.
FCED is classified into 4 stages, from early signs of guttae formation to end-stage subepithelial scarring. Diagnosis is made by biomicroscopic examination in the clinic. Other modalities, such as corneal thickness measurement (pachymetry), in-vivo confocal biomicroscopy, and specular microscopy can be used in conjunction.
Exact pathogenesis is unknown but factors include endothelial cell apoptosis, sex hormones, inflammation, and aqueous humor flow and composition. Mutations in collagen VIII, a major component of Descemet's membrane secreted by endothelial cells, have been linked to the early-onset FCED.
Genes include:
The cause of this condition is not presently known. It appears to be inherited in an autosomal dominant fashion.
A corneal dystrophy can be caused by an accumulation of extraneous material in the cornea, including lipids and cholesterol crystals.
Retinal haemorrhages commonly occur in high attitude climbers, most likely due to the effects of systemic hypoxia on the eye. Risk is correlated with the maximum altitude reached, duration of exposure to high altitude conditions, and climb rate.
Corneal dystrophy is a group of rare hereditary disorders characterised by bilateral abnormal deposition of substances in the transparent front part of the eye called the cornea.
Retinal haemorrhages, especially mild ones not associated with chronic disease, will normally resorb without treatment. Laser surgery is a treatment option which uses a laser beam to seal off damaged blood vessels in the retina. Anti-vascular endothelial growth factor (VEGF) drugs like Avastin and Lucentis have also been shown to repair retinal haemorrhaging in diabetic patients and patients with haemorrhages associated with new vessel growth.
Acorea or fibrous occlusion of the pupil, microphthalmia and cataracts are present in both eyes. Microcornea and iridocorneal dysgenesis also occur. The retina and optic disc are normal.
Vacuoles are demonstrated in the posterior parts of the cornea. The vesicles are located on the endothelial surface. The corneal endothelium is normally a single layer of cells that lose their mitotic potential after development is complete. In posterior polymorphous corneal dystrophy, the endothelium is often multilayered and has several other characteristics of an epithelium, including the presence of desmosomes, tonofilaments, and microvilli. These abnormal cells retain their ability to divide and extend onto the trabecular meshwork to cause glaucoma in up to 40% of cases.
X-linked endothelial corneal dystrophy (XECD) is a rare form of corneal dystrophy described first in 2006, based on a 4-generation family of 60 members with 9 affected males and 35 trait carriers, which led to mapping the XECD locus to Xq25. It manifests as severe corneal opacification or clouding, sometimes congenital, in the form of a ground glass, milky corneal tissue, and moon crater-like changes of corneal endothelium. Trait carriers manifest only endothelial alterations resembling moon craters.
As of December 2014, the molecular basis for this disease remained unknown, although 181 genes were known to be within the XECD locus, of which 68 were known to be protein-coding.
In most patients, the number and size of cherry angiomas increases with advancing age. They are harmless, having no relation to cancer at all.
This disease is more common in women and an association with the gene FLT4 has been described. FLT4 codes for VEGFR-3, which is implicated in development of the lymphatic system.
Milroy's disease is also known as primary or hereditary lymphedema type 1A or early onset lymphedema.
It is a very rare disease with only about 200 cases reported in the medical literature. Milroy's disease is an autosomal dominant condition caused by a mutation in the FLT4 gene which encodes of the vascular endothelial growth factor receptor 3 (VEGFR-3) gene located on the long arm (q) on chromosome 5 (5q35.3).
In contrast to Milroy's disease (early onset lymphedema type 1A,) which typically has its onset of swelling and edema at birth or during early infancy, hereditary lymphedema type II, known as Meige disease, has its onset around the time of puberty. Meige disease is also an autosomal dominant disease. It has been linked to a mutations in the ‘forkhead’ family transcription factor (FOXC2) gene located on the long arm of chromosome 16 (16q24.3). About 2000 cases have been identified. A third type of hereditary lymphedema, that has an onset after the age of 35 is known as lymph-edema tarda.
Susac's syndrome (retinocochleocerebral vasculopathy) is a very rare form of microangiopathy characterized by encephalopathy, branch retinal artery occlusions and hearing loss. The cause is unknown but the current thinking is that antibodies are produced against endothelial cells in tiny arteries which leads to damage and the symptoms related to the illness. Despite this being an extremely rare disease, there are 4 registries collecting data on the illness; two are in the United States, one is in Germany and the fourth is in Portugal.
Susac's syndrome is named for Dr. John Susac (1940–2012), of Winter Haven, Florida, who first described it in 1979. Susac's syndrome is a very rare disease, of unknown cause, and many persons who experience it do not display the bizarre symptoms named here. Their speech can be affected, such as the case of a female of late teens who suffered speech issues and hearing problems, and many experience unrelenting and intense headaches and migraines, some form of hearing loss, and impaired vision. The problem usually corrects itself, but this can take up to five years. In some cases, subjects can become confused. The syndrome usually affects women around the age of 18 years, with female to male ratio of cases of 2:1.
William F. Hoyt was the first to call the syndrome "Susac syndrome" and later Robert Daroff asked Dr. Susac to write an editorial in Neurology about the disorder and to use the eponym of Susac syndrome in the title, forever linking this disease with him.