Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The mortality for toxic epidermal necrolysis is 25-30%. People with SJS or TEN caused by a medications have a better prognosis the earlier the causative medication is withdrawn. Loss of the skin leaves patients vulnerable to infections from fungi and bacteria, and can result in sepsis, the leading cause of death in the disease. Death is caused either by infection or by respiratory distress which is either due to pneumonia or damage to the linings of the airway. Microscopic analysis of tissue (especially the degree of dermal mononuclear inflammation and the degree of inflammation in general) can play a role in determining the prognosis of individual cases.
Intrauterine epidermal necrosis is a cutaneous condition that is rapidly fatal, characterized by skin erosions and ulcerations only.
Many conditions affect the human integumentary system—the organ system covering the entire surface of the body and composed of skin, hair, nails, and related muscle and glands. The major function of this system is as a barrier against the external environment. The skin weighs an average of four kilograms, covers an area of two square meters, and is made of three distinct layers: the epidermis, dermis, and subcutaneous tissue. The two main types of human skin are: glabrous skin, the hairless skin on the palms and soles (also referred to as the "palmoplantar" surfaces), and hair-bearing skin. Within the latter type, the hairs occur in structures called pilosebaceous units, each with hair follicle, sebaceous gland, and associated arrector pili muscle. In the embryo, the epidermis, hair, and glands form from the ectoderm, which is chemically influenced by the underlying mesoderm that forms the dermis and subcutaneous tissues.
The epidermis is the most superficial layer of skin, a squamous epithelium with several strata: the stratum corneum, stratum lucidum, stratum granulosum, stratum spinosum, and stratum basale. Nourishment is provided to these layers by diffusion from the dermis, since the epidermis is without direct blood supply. The epidermis contains four cell types: keratinocytes, melanocytes, Langerhans cells, and Merkel cells. Of these, keratinocytes are the major component, constituting roughly 95 percent of the epidermis. This stratified squamous epithelium is maintained by cell division within the stratum basale, in which differentiating cells slowly displace outwards through the stratum spinosum to the stratum corneum, where cells are continually shed from the surface. In normal skin, the rate of production equals the rate of loss; about two weeks are needed for a cell to migrate from the basal cell layer to the top of the granular cell layer, and an additional two weeks to cross the stratum corneum.
The dermis is the layer of skin between the epidermis and subcutaneous tissue, and comprises two sections, the papillary dermis and the reticular dermis. The superficial papillary dermis with the overlying rete ridges of the epidermis, between which the two layers interact through the basement membrane zone. Structural components of the dermis are collagen, elastic fibers, and ground substance. Within these components are the pilosebaceous units, arrector pili muscles, and the eccrine and apocrine glands. The dermis contains two vascular networks that run parallel to the skin surface—one superficial and one deep plexus—which are connected by vertical communicating vessels. The function of blood vessels within the dermis is fourfold: to supply nutrition, to regulate temperature, to modulate inflammation, and to participate in wound healing.
The subcutaneous tissue is a layer of fat between the dermis and underlying fascia. This tissue may be further divided into two components, the actual fatty layer, or panniculus adiposus, and a deeper vestigial layer of muscle, the panniculus carnosus. The main cellular component of this tissue is the adipocyte, or fat cell. The structure of this tissue is composed of septal (i.e. linear strands) and lobular compartments, which differ in microscopic appearance. Functionally, the subcutaneous fat insulates the body, absorbs trauma, and serves as a reserve energy source.
Conditions of the human integumentary system constitute a broad spectrum of diseases, also known as dermatoses, as well as many nonpathologic states (like, in certain circumstances, melanonychia and racquet nails). While only a small number of skin diseases account for most visits to the physician, thousands of skin conditions have been described. Classification of these conditions often presents many nosological challenges, since underlying etiologies and pathogenetics are often not known. Therefore, most current textbooks present a classification based on location (for example, conditions of the mucous membrane), morphology (chronic blistering conditions), etiology (skin conditions resulting from physical factors), and so on. Clinically, the diagnosis of any particular skin condition is made by gathering pertinent information regarding the presenting skin lesion(s), including the location (such as arms, head, legs), symptoms (pruritus, pain), duration (acute or chronic), arrangement (solitary, generalized, annular, linear), morphology (macules, papules, vesicles), and color (red, blue, brown, black, white, yellow). Diagnosis of many conditions often also requires a skin biopsy which yields histologic information that can be correlated with the clinical presentation and any laboratory data.
In pathology, hypertrophic decidual vasculopathy, abbreviated HDV, is the histomorphologic correlate of gestational hypertension, as may be seen in intrauterine growth restriction (IUGR) and HELLP syndrome.
The name of the condition describes its appearance under the microscope; the smooth muscle of the decidual (or maternal) blood vessels is hypertrophic, i.e. the muscle part of the blood vessels feeding the placenta is larger due to cellular enlargement.
Placental abruption occurs in approximately 0.2–1% of all pregnancies. Though different causes change when abruption is most likely to occur, the majority of placental abruptions occur before 37 weeks gestation, and 14% occur before 32 weeks gestation.
The prognosis of this complication depends on whether treatment is received by the patient, on the quality of treatment, and on the severity of the abruption. Outcomes for the baby also depend on the gestational age.
In the Western world, maternal deaths due to placental abruption are rare. The fetal prognosis is worse than the maternal prognosis; approximately 12% of fetuses affected by placental abruption die. 77% of fetuses that die from placental abruption die before birth; the remainder die due to complications of preterm birth.
Without any form of medical intervention, as often happens in many parts of the world, placental abruption has a high maternal mortality rate.
When ectopic pregnancies are treated, the prognosis for the mother is very good in Western countries; maternal death is rare, but most fetuses die or are aborted. For instance, in the UK, between 2003 and 2005 there were 32,100 ectopic pregnancies resulting in 10 maternal deaths (meaning that 1 in 3,210 women with an ectopic pregnancy died).
In the developing world, however, especially in Africa, the death rate is very high, and ectopic pregnancies are a major cause of death among women of childbearing age.
Fertility following ectopic pregnancy depends upon several factors, the most important of which is a prior history of infertility. The treatment choice does not play a major role; A randomized study in 2013 concluded that the rates of intrauterine pregnancy 2 years after treatment of ectopic pregnancy are approximately 64% with radical surgery, 67% with medication, and 70% with conservative surgery. In comparison, the cumulative pregnancy rate of women under 40 years of age in the general population over 2 years is over 90%.
As PNP is ultimately caused by the presence of a tumor, it is not contagious. There is no known way to predict who will become afflicted with it. Patients with cancer are therefore a group at risk. Although PNP has been known to affect all age groups, it is more likely to afflict middle-aged to older patients.
Histomorphologically, VUE is characterized by a lymphocytic infiltrate of the chorionic villi without a demonstrable cause. Plasma cells should be absent; the presence of plasma cells suggests an infective etiology, e.g. CMV infection.
Villitis of unknown etiology, abbreviated VUE, is an inflammatory process that involves the chorionic villi (villitis) whose cause (etiology) is not known. VUE is associated with recurrent miscarriage and intrauterine growth restriction, and recurs in subsequent pregnancies.
HIV-positive individuals have 1000 times the risk of developing SJS/TEN compared to the general population. The reason for this increased risk is not clear.
AS has a reported incidence of 25% of D&Cs performed 1–4 weeks post-partum, up to 30.9% of D&Cs performed for missed miscarriages and 6.4% of D&Cs performed for incomplete miscarriages. In another study, 40% of patients who underwent repeated D&C for retained products of conception after missed miscarriage or retained placenta developed AS.
In the case of missed miscarriages, the time period between fetal demise and curettage may increase the likelihood of adhesion formation due to fibroblastic activity of the remaining tissue.
The risk of AS also increases with the number of procedures: one study estimated the risk to be 16% after one D&C and 32% after 3 or more D&Cs. However, a single curettage often underlies the condition.
In an attempts to estimate the prevalence of AS in the general population, it was found in 1.5% of women undergoing hysterosalpingography HSG, and between 5 and 39% of women with recurrent miscarriage.
After miscarriage, a review estimated the prevalence of AS to be approximately 20% (95% confidence interval: 13% to 28%).
Linear and whorled nevoid hypermelanosis (also known as "Linear nevoid hyperpigmentation," "Progressive cribriform and zosteriform hyperpigmentation," "Reticulate and zosteriform hyperpigmentation," "Reticulate hyperpigmentation of Iijima and Naito and Uyeno," "Zebra-like hyperpigmentation in whorls and streaks," and "Zebra-line hyperpigmentation") is a disorder of pigmentation that develops within a few weeks of birth and progresses for one to two years before stabilizing. There is linear and whorled hyperpigmentation following the lines of Blaschko without preceding bullae or verrucous lesions. It is important to exclude other pigmentary disorders following the Blaschko lines before making a diagnosis of linear and whorled nevoid hypermelanosis.The differential diagnoses include incontinentia pigmenti, linear epidermal nevus, hypomelanosis of Ito and Goltz syndrome. Recently, a case of linear and whorled nevoid hypermelanosis was reported in a Malaysian Chinese girl.
William Becker first described an association between NME and glucagonoma in 1942 and since then, NME has been described in as many as 70% of individuals with a glucagonoma. NME is considered part of the glucagonoma syndrome, which is associated with hyperglucagonemia, diabetes mellitus, and hypoaminoacidemia.
When NME is identified in the absence of a glucagonoma, it may be considered "pseudoglucagonoma syndrome". Less common than NME with glucagonoma, pseudoglucagonoma syndrome may occur in a number of systemic disorders:
- Celiac disease
- Ulcerative colitis
- Crohn's disease
- Hepatic cirrhosis
- Hepatocellular carcinoma
- Lung cancer, including small cell lung cancer
- Tumors that secrete insulin- or insulin-like growth factor 2
- Duodenal cancer
The prevalence of heterotopic pregnancy is estimated at 0.6‑2.5:10,000 pregnancies. There is a significant increase in the incidence of heterotopic pregnancy in women undergoing ovulation induction. An even greater incidence of heterotopic pregnancy is reported in pregnancies following assisted reproduction techniques such as In Vitro Fertilization (IVF) and Gamete intrafallopian transfer (GIFT), with an estimated incidence at between 1 and 3 in 100 pregnancies. If there is embryo transfer of more than 4 embryos, the risk has been quoted as 1 in 45. In natural conceptions, the incidence of heterotopic pregnancy has been estimated to be 1 in 30 000 pregnancies.
The decision to observe or treat a nevus may depend on a number of factors, including cosmetic concerns, irritative symptoms (e.g., pruritus), ulceration, infection, and concern for potential malignancy.
ILVEN usually appears in infancy or early childhood. The condition is very rarely begun in adulthood. ILVEN occurs predominantly in females (female-male ratio, 4:1) with no racial predominance.
The cause of NME is unknown, although various mechanisms have been suggested. These include hyperglucagonemia, zinc deficiency, fatty acid deficiency, hypoaminoacidemia, and liver disease. The pathogenesis is also unknown.
The morphologic features of mild and moderate HDV include:
- Perivascular inflammatory cells,
- +/-Vascular thrombosis,
- Smooth muscle hypertrophy, and
- Endothelial hyperplasia.
Severe HDV is characterized by:
- Atherosis - foamy macrophages within vascular wall, and
- Fibrinoid necrosis of vessel wall (amorphous eosinophilic vessel wall).
In sheep, intrauterine growth restriction can be caused by heat stress in early to mid pregnancy. The effect is attributed to reduced placental development causing reduced fetal growth. Hormonal effects appear implicated in the reduced placental development. Although early reduction of placental development is not accompanied by concurrent reduction of fetal growth; it tends to limit fetal growth later in gestation. Normally, ovine placental mass increases until about day 70 of gestation, but high demand on the placenta for fetal growth occurs later. (For example, research results suggest that a normal average singleton Suffolk x Targhee sheep fetus has a mass of about 0.15 kg at day 70, and growth rates of about 31 g/day at day 80, 129 g/day at day 120 and 199 g/day at day 140 of gestation, reaching a mass of about 6.21 kg at day 140, a few days before parturition.)
In adolescent ewes (i.e. ewe hoggets), overfeeding during pregnancy can also cause intrauterine growth restriction, by altering nutrient partitioning between dam and conceptus. Fetal growth restriction in adolescent ewes overnourished during early to mid pregnancy is not avoided by switching to lower nutrient intake after day 90 of gestation; whereas such switching at day 50 does result in greater placental growth and enhanced pregnancy outcome. Practical implications include the importance of estimating a threshold for "overnutrition" in management of pregnant ewe hoggets. In a study of Romney and Coopworth ewe hoggets bred to Perendale rams, feeding to approximate a conceptus-free live mass gain of 0.15 kg/day (i.e. in addition to conceptus mass), commencing 13 days after the midpoint of a synchronized breeding period, yielded no reduction in lamb birth mass, where compared with feeding treatments yielding conceptus-free live mass gains of about 0 and 0.075 kg/day.
In both of the above models of IUGR in sheep, the absolute magnitude of uterine blood flow is reduced. Evidence of substantial reduction of placental glucose transport capacity has been observed in pregnant ewes that had been heat-stressed during placental development.
Linear verrucous epidermal nevus (also known as a "Linear epidermal nevus," and "Verrucous epidermal nevus") is a skin lesion characterized by a verrucous skin-colored, dirty-gray or brown papule. Generally, multiple papules present simultaneously, and coalesce to form a serpiginous plaque. When this nevus covers a diffuse or extensive portion of the body's surface area, it may be referred to as a systematized epidermal nevus, when it involved only one-half of the body it is called a nevus unius lateris.
Inflammatory Linear Verrucous Epidermal Nevus (ILVEN) is a rare disease of the skin that presents as multiple, discrete, red papules that tend to coalesce into linear plaques that follow the Lines of Blaschko. The plaques can be slightly warty (psoriaform) or scaly (eczema-like). ILVEN is caused by somatic mutations that result in genetic mosaicism. There is no cure, but different medical treatments can alleviate the symptoms.
If the lesions are mild, the patient will be subject to a good deal of pain. If the lesions are severe, the overall quality of life is devastating. The impaired skin barrier function commonly leads to localized infection, which sepsis and death may follow. The pain from the oral and pharyngeal ulcers interfere with eating, which can compromise nutritional health.
The general prognosis for PNP is poor. It is more hopeful if the tumor is benign, but in the case of malignant tumors, the mortality rate is roughly 90%. The two most commonly associated types of tumors are non-Hodgkin lymphoma and chronic lymphocytic lymphoma; nearly all of these patients die within two years of diagnosis. This is attributed to the effects of the tumor combined with the negative side effects of the medication administered to treat PNP.
Roughly 1/3 of the deaths from PNP stem from pulmonary insufficiency which is brought about by the action of PNP on the respiratory mucosa. It manifests as dyspnea and progresses to bronchiolitis obliterans (non-reversible obstructive lung disease) via an unknown mechanism.
These nevi represent excess growth of blood vessels, including capillaries.
- Nevus simplex (also known as a stork bite, salmon patch, or Nevus flammeus neonatorum)