Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Polymyositis, like dermatomyositis, strikes females with greater frequency than males.
Polymyositis is an inflammatory myopathy mediated by cytotoxic T cells with an as yet unknown autoantigen, while dermatomyositis is a humorally mediated angiopathy resulting in myositis and a typical dermatitis.
The cause of polymyositis is unknown and may involve viruses and autoimmune factors. Cancer may trigger polymyositis and dermatomyositis, possibly through an immune reaction against cancer that also attacks a component of muscles.
Myositis is inflammation or swelling of the muscles. Injury, medicines, infection, or an immune disorder can lead to myositis. It is a documented side effect of the lipid-lowering drugs statins and fibrates.
Types of myositis include:
- myositis ossificans
- (idiopathic) inflammatory myopathies
- dermatomyositis
- juvenile dermatomyositis
- polymyositis
- inclusion body myositis
- pyomyositis
Every year between 2.18 and 7.7 people per million receive a diagnosis of PM or DM. Around 3.2 children per million per year are diagnosed with DM (termed juvenile dermatomyositis), with an average age of onset of seven years. Diagnosis of adult DM commonly occurs between 30 and 50 years of age. PM is an adult disease, usually emerging after the age of twenty. PM and DM are more common in females, more common in Caucasians, and least common in Asians. At any given time, about 35.5 people per million have IBM; it emerges after the age of 30 (usually after 50), and may be more common in males.
Of the children diagnosed with and treated for JDM, about half will recover completely. Close to 30 percent will have weakness after the disease resolves. Most children will go into remission and have their medications eliminated within two years, while others may take longer to respond or have more severe symptoms that take longer to clear up.
A common lasting effect of JDM is childhood arthritis.
The underlying cause of JDM is unknown. It most likely has a genetic component, as other autoimmune disease tend to run in the families of patients. The disease is usually triggered by a condition that causes immune system activity that does not stop as it should, but the trigger is almost certainly not the cause in most cases. Common triggers include immunizations, infections, injuries, and sunburn.
The cause is unknown, but it may result from an initial viral infection or cancer, either of which could raise an autoimmune response.
Between 7 and 30% of dermatomyositis arise from cancer, probably as an autoimmune response. The most common associated cancers are ovarian cancer, breast cancer, and lung cancer. 18 to 25% of people with amyopathic DM also have cancer.
Some cases are inherited, and HLA subtypes HLA-DR3, HLA-DR52, and HLA-DR6 seem to create a disposition to dermatomyositis.
The prognosis of mixed connective tissue disease is in one third of cases worse than that of systemic lupus erythematosus (SLE). In spite of prednisone treatment, this disease is progressive and may in many cases evolve into a progressive systemic sclerosis (PSS), also referred to as diffuse cutaneous systemic scleroderma (dcSSc) which has a poor outcome. In some cases though the disease is mild and may only need aspirin as a treatment and may go into remission where no Anti-U1-RNP antibodies are detected, but that is rare or within 30% of cases. Most deaths from MCTD are due to heart failure caused by pulmonary arterial hypertension (PAH).
Dermatomyositis (DM) is a long term inflammatory disorder which affects muscles. Symptoms generally a skin rash and worsening muscle weakness over time. Symptoms may occur suddenly or develop over months. Other symptoms may include weight loss, fever, lung inflammation, or light sensitivity. Complications may include calcium deposits in muscles or skin.
The cause is unknown. Theories include that it is an autoimmune disease or a result of a viral infection. It is a type of inflammatory myopathy. Diagnosis is typically based on some combination of symptoms, blood tests, electromyography, and muscle biopsies.
While there is no cure for the condition, treatments generally improve symptoms. Treatments may include medication, physical therapy, exercise, heat therapy, orthotics, and assistive devices, and rest. Medications in the corticosteroids family are typically used with other agents like methotrexate or azathioprine recommended if steroids are not working well. Intravenous immunoglobulin may also improve outcomes. Most people improve with treatment and in some the condition resolves completely.
About 1 per 100,000 people per year are newly affected. The condition usually occurs in those in their 40s and 50s with women being affected more often than men. People of any age, however, may be affected. The condition was first described in the 1800s.
Mixed connective tissue disease (also known as Sharp's syndrome), commonly abbreviated as MCTD, is an autoimmune disease characterized by the presence of high blood levels of a specific autoantibody, now called anti-U1 ribonucleoprotein (RNP). The idea behind the "mixed" disease is that this specific autoantibody is also present in other autoimmune diseases such as systemic lupus erythematosus, polymyositis, scleroderma, etc. It was characterized in 1972, and the term was introduced by Leroy in 1980.
It is sometimes said to be the same as undifferentiated connective tissue disease, but other experts specifically reject this idea because undifferentiated connective tissue disease is not necessarily associated with serum antibodies directed against the U1-RNP, and MCTD is associated with a more clearly defined set of signs/symptoms.
Anti-synthetase syndrome is a autoimmune disease associated with interstitial lung disease, dermatomyositis, and polymyositis.
sIBM is not inherited and is not passed on to the children of IBM patients. There are genetic features that do not directly cause IBM but that appear to predispose a person to getting IBM — having this particular combination of genes increases one's susceptibility to getting IBM. Some 67% of IBM patients have a particular combination of human leukocyte antigen genes in a section of the 8.1 ancestral haplotype in the center of the MHC class II region. sIBM is not passed on from generation to generation, although the susceptibility region of genes may be.
There are also several rare forms of hereditary inclusion body myopathy that are linked to specific genetic defects and that are passed on from generation to generation. Since these forms do not show features of muscle inflammation, they are classified as myopathies rather than forms of myositis. Because they do not display inflammation as a primary symptom, they may in fact be similar, but different diseases to sporadic inclusion body myositis. There are several different types, each inherited in different ways. See hereditary inclusion body myopathy.
A 2007 review concluded there is no indication that the genes responsible for the familial or hereditary conditions are involved in sIBM.
The cause of IBM is unknown. IBM likely results from the interaction of a number of genetic and environmental factors.
There are two major theories about how sIBM is caused. One hypothesis suggests that the inflammation-immune reaction, caused by an unknown trigger – likely an undiscovered virus or an autoimmune disorder– is the primary cause of sIBM and that the degeneration of muscle fibers and protein abnormalities are secondary features. Despite the arguments "in favor of an adaptive immune response in sIBM, a purely autoimmune hypothesis for sIBM is untenable because of the disease's resistance to most immunotherapy."
The second school of thought advocates the theory that sIBM is a degenerative disorder related to aging of the muscle fibers and that abnormal, potentially pathogenic protein accumulations in myofibrils play a key causative role in sIBM (apparently before the immune system comes into play). This hypothesis emphasizes the abnormal intracellular accumulation of many proteins, protein aggregation and misfolding, proteosome inhibition, and endoplasmic reticulum (ER) stress.
One review discusses the "limitations in the beta-amyloid-mediated theory of IBM myofiber injury."
Dalakas (2006) suggested that a chain of events causes IBM—some sort of virus, likely a retrovirus, triggers the cloning of T cells. These T cells appear to be driven by specific antigens to invade muscle fibers. In people with sIBM, the muscle cells display “flags” telling the immune system that they are infected or damaged (the muscles ubiquitously express MHC class I antigens) and this immune process leads to the death of muscle cells. The chronic stimulation of these antigens also causes stress inside the muscle cell in the endoplasmic reticulum (ER) and this ER stress may be enough to cause a self-sustaining T cell response (even after a virus has dissipated). In addition, this ER stress may cause the misfolding of protein. The ER is in charge of processing and folding molecules carrying antigens. In IBM, muscle fibers are overloaded with these major histocompatibility complex (MHC) molecules that carry the antigen protein pieces, leading to more ER stress and more protein misfolding.
A self-sustaining T cell response would make sIBM a type of autoimmune disorder. When studied carefully, it has not been impossible to detect an ongoing viral infection in the muscles. One theory is that a chronic viral infection might be the initial triggering factor setting IBM in motion. There have been a handful of IBM cases—approximately 15—that have shown clear evidence of a virus called HTLV-1. The HTLV-1 virus can cause leukemia, but in most cases lies dormant and most people end up being lifelong carriers of the virus. One review says that the best evidence points towards a connection with some type of retrovirus and that a retroviral infection combined with immune recognition of the retrovirus is enough to trigger the inflammation process.
- amyloid protein
- The hypothesis that beta amyloid protein is key to IBM has been supported in a mouse model using an Aβ vaccine that was found to be effective against inclusion body myositis in mouse models. Although this vaccine is likely not safe for human use, it still shows that attacking Aβ has efficacy in mice against IBM.
- Following up on earlier leads, the Greenberg group report finding that the protein TDP-43 is a very prominent and highly sensitive and specific feature of IBM. This protein is normally found within the nucleus but in IBM is found in the cytoplasm of the cell. This important advance should help develop a new screening technique for IBM and may provide clues in terms of a therapeutic approach
Myositis ossificans comprises two syndromes characterized by heterotopic ossification (calcification) of muscle.
According to a recent study, the main risk factors for RA-ILD are advancing age, male sex, greater RA disease activity, rheumatoid factor (RF) positivity, and elevated titers of anticitrullinated protein antibodies such as anticyclic citrullinated peptide. Cigarette smoking also appears to increase risk of RA-ILD, especially in patients with human leukocyte antigen DRB1.
A recently published retrospective study by a team from Beijing Chao-Yang Hospital in Beijing, China, supported three of the risk factors listed for RA-ILD and identified an additional risk factor. In that study of 550 RA patients, logistic regression analysis of data collected on the 237 (43%) with ILD revealed that age, smoking, RF positivity, and elevated lactate dehydrogenase closely correlated with ILD.
Recent studies have identified risk factors for disease progression and mortality. A retrospective study of 167 patients with RA-ILD determined that the usual interstitial pneumonia (UIP) pattern on high-resolution computed tomography (HRCT) was a risk factor for progression, as were severe disease upon diagnosis and rate of change in pulmonary function test results in the first 6 months after diagnosis.
A study of 59 RA-ILD patients found no median survival difference between those with the UIP pattern and those without it. But the UIP group had more deaths, hospital admissions, need for supplemental oxygen, and decline in lung function.
Despite its very similar clinical presentation to PM, IBM does not respond to the drugs that effectively treat PM, and there is no proven effective therapy for IBM. Alemtuzumab is being studied but as of May 2013 it had not demonstrated clinical effectiveness in IBM. Dysphagia (difficulty swallowing) may be improved by intravenous immunoglobulin, though more trials are needed. Non-fatiguing, systematic strength-building exercise has demonstrated benefit. Occupational and rehabilitation therapists can offer good advice on walking without falling and performing fine motor tasks, and can provide appropriate canes, braces and wheelchairs. Speech pathologists can provide advice on preventing choking episodes and reducing the anxiety of an immanent aspiration for both patients and carers.
Radiation therapy subsequent to the injury or as a preventive measure of recurrence may be applied but its usefulness is inconclusive. If the surgery performed next step in accordance with literature postoperative single low-dose radiation with 3 weeks of oral indomethacin regimen will be preventive for recurrence.
Dermatopolymyositis (also called PM/DM) is a family of myositis disorders that includes polymyositis and dermatomyositis.
It is postulated that autoantibodies are formed against aminoacyl-tRNA synthetases. The synthethases may be involved in recruiting antigen-presenting and inflammatory cells to the site of muscle or lung injury. The specific molecular pathway of the process awaits elucidation.
Chronic allograft nephropathy, abbreviated CAN and also known as sclerosing/chronic allograft nephropathy, is the leading cause of kidney transplant failure and happens month to years after the transplant.
Interstitial granulomatous dermatitis with arthritis is a condition that most commonly presents with symmetrical round-to-oval erythematous or violaceous plaques on the flanks, axillae, inner thighs, and lower abdomen.
Ectopic ossification of the heart valves is an indicator of future heart problems, hyperparathyroidism, and necrosis of tissues.
Scleromyositis or the PM/Scl overlap syndrome is a complex autoimmune disease (a disease in which the immune system attacks the body). Patients with scleromyositis have symptoms of both systemic scleroderma and either polymyositis or dermatomyositis, and is therefore considered an overlap syndrome. Although it is a rare disease, it is one of the more common overlap syndromes seen in scleroderma patients, together with MCTD and Antisynthetase syndrome. Autoantibodies often found in these patients are the anti-PM/Scl (anti-exosome) antibodies.
The symptoms that are seen most often are typical symptoms of the individual autoimmune diseases and include Raynaud's phenomenon, arthritis, myositis and scleroderma. Treatment of these patients is therefore strongly dependent on the exact symptoms with which a patient reports to a physician and is similar to treatment for the individual autoimmune disease, often involving either immunosuppressive or immunomodulating drugs.
- Clinical characteristics:
- Overlap Syndrome: scleroderma overlap syndrome
- Autoimmune disease
- Scleroderma myositis overlap syndrome
Eosinophilia can be idiopathic (primary) or, more commonly, secondary to another disease. In the Western World, allergic or atopic diseases are the most common causes, especially those of the respiratory or integumentary systems. In the developing world, parasites are the most common cause. A parasitic infection of nearly any bodily tissue can cause eosinophilia.
Diseases that feature eosinophilia as a sign include:
- Allergic disorders
- Asthma
- Hay fever
- Drug allergies
- Allergic skin diseases
- Pemphigus
- Dermatitis herpetiformis
- IgG4-related disease
- Parasitic infections
- Addison's disease and stress-induced suppression of adrenal gland function
- Some forms of malignancy
- Acute lymphoblastic leukemia
- Chronic myelogenous leukemia
- Eosinophilic leukemia
- Clonal eosinophilia
- Hodgkin lymphoma
- Some forms of non-Hodgkin lymphoma
- Lymphocyte-variant hypereosinophilia
- Systemic mastocytosis
- Systemic autoimmune diseases
- Systemic lupus erythematosus
- Kimura disease
- Eosinophilic granulomatosis with polyangiitis
- Eosinophilic fasciitis
- Eosinophilic myositis
- Eosinophilic esophagitis
- Eosinophilic gastroenteritis
- Cholesterol embolism (transiently)
- Coccidioidomycosis (Valley fever), a fungal disease prominent in the US Southwest.
- Human immunodeficiency virus infection
- Interstitial nephropathy
- Hyperimmunoglobulin E syndrome, an immune disorder characterized by high levels of serum IgE
- Idiopathic hypereosinophilic syndrome.
- Congenital disorders
- Hyperimmunoglobulin E syndrome
- Omenn syndrome
- Familial eosinophilia