Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Thrombosis prevention is initiated with assessing the risk for its development. Some people have a higher risk of developing thrombosis and its possible development into thromboembolism. Some of these risk factors are related to inflammation. "Virchow's triad" has been suggested to describe the three factors necessary for the formation of thrombosis: stasis of blood, vessel wall injury, and altered blood coagulation. Some risk factors predispose for venous thrombosis while others increase the risk of arterial thrombosis.
The main causes of thrombosis are given in Virchow's triad which lists thrombophilia, endothelial cell injury, and disturbed blood flow.
Preventing the development of blood clots in the upper extremities is done by accessing the risk of the development of such clots.The traditional treatment for thrombosis is the same as for a lower extremity DVT, and involves systemic anticoagulation to prevent a pulmonary embolus. Some have also recommended thrombolysis with catheter directed alteplase. If there is thoracic outlet syndrome or other anatomical cause then surgery can be considered to correct the underlying defect.
The condition is relatively rare. It usually presents in young and otherwise healthy patients, and also occurs more often in males than females. The syndrome also became known as "effort-induced thrombosis" in the 1960s, as it has been reported to occur after vigorous activity, though it can also occur due to anatomic abnormality such as clavicle impingement or spontaneously. It may develop as a sequela of thoracic outlet syndrome. It is differentiated from secondary causes of upper extremity caused by intravascular catheters. Paget–Schroetter syndrome was described once for a viola player who suddenly increased practice time 10-fold, creating enough repetitive pressure against the brachiocephalic and external jugular veins to cause thrombosis.
Symptoms may include sudden onset of pain, warmth, redness, blueness and swelling in the arm. Diagnosis is usually confirmed with an ultrasound. These DVTs have the potential to cause a pulmonary embolism.
Currently laboratory testing is not as reliable as observation when it comes to defining the parameters of Thrombotic Storm. Careful evaluation of possible thrombosis in other organ systems is pertinent in expediting treatment to prevent fatality.Preliminary diagnosis consists of evidence documented with proper imaging studies such as CT scan, MRI, or echocardiography, which demonstrate a thromboembolic occlusion in the veins and/or arteries. Vascular occlusions mentioned must include at least two of the clinic events:
- Deep venous thrombosis affecting one (or more) limbs and/or pulmonary embolism.
- Cerebral vein thrombosis.
- Portal vein thrombosis, hepatic vein, or other intra-abdominal thrombotic events.
- Jugular vein thrombosis in the absence of ipsilateral arm vein thrombosis and in the absence of ipsilateral central venous access.
- Peripheral arterial occlusions, in the absence of underlying atherosclerotic vascular disease,
- resulting in extremity ischemia and/or infarction.
- Myocardial infarction, in the absence of severe coronary artery disease
- Stroke and/or transient ischemic attack, in the absence of severe atherosclerotic disease and at an age less than 60 years.
- Central retinal vein and/or central retinal arterial thrombosis.
- Small vessel thrombosis affecting one or more organs, systems, or tissue; must be documented by histopathology.
In addition to the previously noted vascular occlusions, development of different thromboembolic manifestations simultaneously or within one or two weeks must occur and the patient must have an underlying inherited or acquired hypercoagulable state (other than Antiphospholipid syndrome)
Thrombotic Storm has been seen in individuals of all ages and races. The initial symptoms of TS present in a similar fashion to the symptoms experienced in deep vein thrombosis. Symptoms of a DVT may include pain, swelling and discoloration of the skin in the affected area. As with DVTs patients with TS may subsequently develop pulmonary emboli. Although the presentation of TS and DVTs are similar, TS typically progresses rapidly, with numerous clots occurring within a short period of time. After the formation of the initial clot a patient with TS typically begins a “clotting storm” with the development of multiple clots throughout the body. Rapid progression within a short period of time is often seen, affecting multiple organs systems. The location of the clot is often unusual or found in a spot in the body that is uncommon such as the dural sinus. Patients tend to respond very well to anticoagulation such as coumadin or low molecular weight heparin but may become symptomatic when treatment is withheld.
While the key clinical characteristics of thrombotic storm are still being investigated, it is believed that the clinical course is triggered by a preexisting condition, known as a hypercoagulable state. These can include such things as pregnancy, trauma or surgery. Hypercoagulable states can be an inherited or acquired risk factor that then serves as a trigger to initiate clot formation. However, in a subset of patient with TS a trigger cannot be identified. Typically people with TS will have no personal or family history of coagulations disorders.
Jugular vein ectasia is a venous anomaly that commonly presents itself as a unilateral neck swelling in children and adults. It is rare to have bilateral neck swelling due to internal jugular vein ectasia.
For individuals who survive the initial crush injury, survival rates are high for traumatic asphyxia.
Vein of Galen malformations are devastating complications. Studies have shown that 77% of untreated cases result in mortality. Even after surgical treatment, the mortality rate remains as high as 39.4%. Most cases occur during infancy when the mortality rates are at their highest. Vein of Galen malformations are a relatively unknown affliction, attributed to the rareness of the malformations. Therefore, when a child is diagnosed with a faulty Great Cerebral Vein of Galen, most parents know little to nothing about what they are dealing with. To counteract this, support sites have been created which offer information, advice, and a community of support to the afflicted (, ).
70% of patients with carotid arterial dissection are between the ages of 35 and 50, with a mean age of 47 years.
Studies have recently shown that hemopericardium can occur spontaneously in people with essential thrombocythaemia, although this is relatively rare. It is a more common occurrence in patients who have been over-prescribed anticoagulants. Regardless of the underlying cause of the hemopericardium, pericardiocentesis has shown to be the best treatment method for the condition.
The complications that are usually associated with vein of Galen malformations are usually intracranial hemorrhages. Over half the patients with VGAM have a malformation that cannot be corrected. Patients frequently die in the neonatal period or in early infancy.
While exercise is used to maintain muscle, bone and cardiac health during spaceflight, its effects on ICP and IOP have yet to be determined. The effects of resistive exercise on the development of ICP remains controversial. An early investigation showed that the brief intrathoractic pressure increase during a Valsalva maneuver resulted in an associated rise in ICP. Two other investigations using transcranial Doppler ultrasound techniques showed that resistive exercise without a Valsalva maneuver resulted in no change in peak systolic pressure or ICP. The effects of resistive exercise in IOP are less controversial. Several different studies have shown a significant increase in IOP during or immediately after resistive exercise.
There is much more information available regarding aerobic exercise and ICP. The only known study to examine ICP during aerobic exercise by invasive means showed that ICP decreased in patients with intracranial hypertension and those with normal ICP. They suggested that because aerobic exercise is generally done without Valsalva maneuvers, it is unlikely that ICP will increase during exercise. Other studies show global brain blood flow increases 20-30% during the transition from rest to moderate exercise.
More recent work has shown that an increase in exercise intensity up to 60% VOmax results in an increase in CBF, after which CBF decreases towards (and sometimes below) baseline values with increasing exercise intensity.
Blood, like electric current, flows along the path of least resistance. Resistance is affected by the length and width of a vessel (i.e. a long, narrow vessel has the greatest resistance and a short, wide one the least), but crucially in the human body width is generally more limiting than length because of Poiseuille's Law. Thus, if blood is presented with two paths, a short one that is narrow (with a high overall resistance) and a long one that is wide (with a low overall resistance), it will take the long and wide path (the one with the lower resistance).
Normally, blood flows from the aorta into the subclavian artery, and then some of that blood leaves via the vertebral artery to supply the brain.
In SSS a reduced quantity of blood flows through the proximal subclavian artery. As a result, blood travels up one of the other blood vessels to the brain (the other vertebral or the carotids), reaches the basilar artery or goes around the cerebral arterial circle and descends via the (contralateral) vertebral artery to the subclavian (with the proximal blockage) and feeds blood to the distal subclavian artery (which supplies the upper limb and shoulder).
A link between increased ICP and altered sodium and water retention was suggested by a report in which 77% of IIH patients had evidence of peripheral edema and 80% with orthostatic retention of sodium and water. Impaired saline and water load excretions were noted in the upright position in IIH patients with orthostatic edema compared to lean and obese controls without IIH. However, the precise mechanisms linking orthostatic changes to IIH were not defined, and many IH patients do not have these sodium and water abnormalities. Astronauts are well known to have orthostatic intolerance upon reentry to gravity after long-duration spaceflight, and the dietary sodium on orbit is also known to be in excess of 5 grams per day in some cases. The Majority of the NASA cases did have high dietary sodium during their increment. The ISS program is working to decrease in-flight dietary sodium intake to less than 3 grams per day. Prepackaged foods for the International Space Station were originally high in sodium at 5300 mg/d. This amount has now been substantially reduced to 3000 mg/g as a result of NASA reformulation of over ninety foods as a conscious effort to reduce astronaut sodium intake.
The sudden impact on the thorax causes an increase in intrathoracic pressure. In order for traumatic asphyxia to occur, a Valsalva maneuver is required when the traumatic force is applied. Exhalation against the closed glottis along with the traumatic event causes air that cannot escape from the thoracic cavity. Instead, the air causes increased venous back-pressure, which is transferred back to through the right atrium, to the superior vena cava and to the head and neck veins and capillaries.
It is difficult to determine the incidence of TACO, but its incidence is estimated at about one in every 100 transfusions using active surveillance, and in one in every 10000 transfusions using passive surveillance. TACO is the most commonly reported cause of transfusion-related death and major morbidity in the UK, and second most common cause in the USA.
The risk increases with patients over the age of 60, patients with cardiac or pulmonary failure, renal impairment, hypoalbuminemia or anemia.
Hemopericardium has been reported to result from various afflictions including chest trauma, free wall rupture after a myocardial infarction, bleeding into the pericardial sac following a type A aortic dissection, and as a complication of invasive cardiac procedures. Acute leukemia has also been reported as a cause of the condition. Several cases of hemopericardium have also been reported as a side-effect of anticoagulants. Patients should be made aware of this fact when prescribed these drugs.
Once considered uncommon, spontaneous carotid artery dissection is an increasingly recognised cause of stroke that preferentially affects the middle-aged.
The incidence of spontaneous carotid artery dissection is low, and incidence rates for internal carotid artery dissection have been reported to be 2.6 to 2.9 per 100,000.
Observational studies and case reports published since the early 1980s show that patients with spontaneous internal carotid artery dissection may also have a history of stroke in their family and/or hereditary connective tissue disorders, such as Marfan syndrome, Ehlers-Danlos syndrome, autosomal dominant polycystic kidney disease, pseudoxanthoma elasticum, fibromuscular dysplasia, and osteogenesis imperfecta type I. IgG4-related disease involving the carotid artery has also been observed as a cause.
However, although an association with connective tissue disorders does exist, most people with spontaneous arterial dissections do not have associated connective tissue disorders. Also, the reports on the prevalence of hereditary connective tissue diseases in people with spontaneous dissections are highly variable, ranging from 0% to 0.6% in one study to 5% to 18% in another study.
Internal carotid artery dissection can also be associated with an elongated styloid process (known as Eagle syndrome when the elongated styloid process causes symptoms).
The incidence of myocardial rupture has decreased in the era of urgent revascularization and aggressive pharmacological therapy for the treatment of an acute myocardial infarction. However, the decrease in the incidence of myocardial rupture is not uniform; there is a slight increase in the incidence of rupture if thrombolytic agents are used to abort a myocardial infarction. On the other hand, if primary percutaneous coronary intervention is performed to abort the infarction, the incidence of rupture is significantly lowered. The incidence of myocardial rupture if PCI is performed in the setting of an acute myocardial infarction is about 1 percent.
The frequency of tamponade is unclear. One estimate from the United States places it at 2 per 10,000 per year. It is estimated to occur in 2% of those with stab or gunshot wounds to the chest.
The largest clinical trial performed, CREST, randomized patients at risk for a stroke from carotid artery blockage to either open surgery (carotid endarterectomy) or carotid stent placement with embolic protection. This trial followed patients for 4 years and found no overall difference in the primary end point of both treatment arms (myocardial infarctions, any perioperative strokes or ipsilateral strokes within 4 years, or death during procedure). Patients assigned to the surgical arm experienced more perioperative myocardial infarctions compared to the stenting group; however, the difference was not statistically significant (6.8% vs or 7.2% HR for stenting is 1.1 CI 0.81-1.51 P value 0.51) whereas patients assigned to the carotid stent arm experienced more periprocedural strokes compared to endarteretomy (6.4% vs 4.7% HR for stenting 1.5 P-0.03). There was no mortality difference and no difference for major (disabling) strokes between surgery and stenting. It was noted that there did seem to exist an age cutoff where below 75 years old endarterectomy provided more positive outcomes and over 75 stenting offered a better risk profile. However, it should be noted that the CREST trial was not designed for subgroup analysis and thus not powered enough to draw any statistically significant conclusions. A later study published in 2013 evaluated how these perioperative complications affect long-term survival. This study showed that experiencing a stroke within the first year conferred a two-fold lower survival rate (Hazard Ratio(HR) 6.6 [CI 3.7-12]) than those who experienced a perioperative myocardial infarction at two years post intervention (HR 3.6 [CI 2-6.8]). This difference in mortality, however, converges and becomes negligible at 5 years (HR 2.7 [CI 1.7-4.3] vs HR 2.8 [CI 1.8-4.3]). A 2010 study found benefits (reduced strokes) from carotid endarterectomy in those without symptoms who are under 75.
Options include:
- Medications alone (an antiplatelet drug (or drugs) and control of risk factors for atherosclerosis).
- Medical management plus carotid endarterectomy or carotid stenting, which is preferred in patients at high surgical risk and in younger patients.
- Control of smoking, high blood pressure, and high levels of lipids in the blood.
The goal of treatment is to reduce the risk of stroke (cerebrovascular accident). Intervention (carotid endarterectomy or carotid stenting) can cause stroke; however, where the risk of stroke from medical management alone is high, intervention may be beneficial. In selected trial participants with asymptomatic severe carotid artery stenosis, carotid endarterectomy reduces the risk of stroke in the next 5 years by 50%, though this represents a reduction in absolute incidence of all strokes or perioperative death of approximately 6%. In most centres, carotid endarterectomy is associated with a 30-day stroke or mortality rate of < 3%; some areas have higher rates.
Clinical guidelines (such as those of National Institute for Clinical Excellence (NICE) ) recommend that all patients with carotid stenosis be given medication, usually blood pressure lowering medications, anti-clotting medications, anti-platelet medications (such as aspirin or clopidogrel), and especially statins (which were originally prescribed for their cholesterol-lowering effects but were also found to reduce inflammation and stabilize plaque).
NICE and other guidelines also recommend that patients with "symptomatic" carotid stenosis be given carotid endarterectomy urgently, since the greatest risk of stroke is within days. Carotid endarterectomy reduces the risk of stroke or death from carotid emboli by about half.
For people with stenosis but no symptoms, the interventional recommendations are less clear. Such patients have a historical risk of stroke of about 1-2% per year. Carotid endarterectomy has a surgical risk of stroke or death of about 2-4% in most institutions. In the large Asymptomatic Carotid Surgery Trial (ACST) endarterectomy reduced major stroke and death by about half, even after surgical death and stroke was taken into account. According to the Cochrane Collaboration the absolute benefit of surgery is small. For intervention using stents, there is insufficient evidence to support stenting rather than open surgery, and several trials, including the ACST-2, are comparing these 2 procedures.
The prognosis of myocardial rupture is dependent on a number of factors, including which portion of the myocardium is involved in the rupture. In one case series, if myocardial rupture involved the free wall of the left ventricle, the mortality rate was 100.0%. The chances of survival rise dramatically if the patient: 1. has a witnessed initial event; 2. seeks early medical attention; 3. has an accurate diagnosis by the emergentologist; and 4. happens to be at a facility that has a cardiac surgery service (by whom a quick repair of the rupture can be attempted). Even if the individual survives the initial hemodynamic sequelae of the rupture, the 30‑day mortality is still significantly higher than if rupture did not occur.