Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Most blinded conscious provocation studies have failed to show a correlation between exposure and symptoms, leading to the suggestion that psychological mechanisms play a role in causing or exacerbating EHS symptoms. In 2010, Rubin et al. published a follow-up to their 2005 review, bringing the totals to 46 double-blind experiments and 1175 individuals with self-diagnosed hypersensitivity. Both reviews found no robust evidence to support the hypothesis that electromagnetic exposure causes EHS, as have other studies. They also concluded that the studies supported the role of the nocebo effect in triggering acute symptoms in those with EHS.
Some other types of studies suggest evidence for symptoms at non-thermal levels of electromagnetic exposure. A review in 2010 of ten studies on neurobehavioral and cancer outcomes near cell phone base stations found eight with increased prevalence, including sleep disturbance and headaches. Since 1962, the microwave auditory effect or tinnitus has been shown from radio frequency exposure at levels below significant heating. Studies during the 1960s in Europe and Russia claimed to show effects on humans, especially the nervous system, from low energy RF radiation; the studies were disputed at the time.
Other studies on sensitivity have looked at therapeutic procedures using non-thermal electromagnetic exposure, genetic factors, an alteration in mast cells, oxidative stress, protein expression and voltage-gated calcium channels. Mercury release from dental amalgam and heavy metal toxicity have also been implicated in exposure effects and symptoms. Another line of study has been the nature of hyper-sensitivity or intolerance and the range of environmental exposures which may be related to it. Some 80% of people with self-diagnosed electromagnetic intolerance also claim intolerance to low levels of chemical exposure.
Allergenic extracts, hormones and vaccines can also cause serum sickness.
Some of the drugs associated with serum sickness are:
- allopurinol
- barbiturates
- captopril
- cephalosporins
- griseofulvin
- penicillins
- phenytoin
- procainamide
- quinidine
- streptokinase
- sulfonamides
- rituximab
- ibuprofen
- infliximab
Although genetic factors govern susceptibility to atopic disease, increases in atopy have occurred within too short a time frame to be explained by a genetic change in the population, thus pointing to environmental or lifestyle changes. Several hypotheses have been identified to explain this increased rate; increased exposure to perennial allergens due to housing changes and increasing time spent indoors, and changes in cleanliness or hygiene that have resulted in the decreased activation of a common immune control mechanism, coupled with dietary changes, obesity and decline in physical exercise. The hygiene hypothesis maintains that high living standards and hygienic conditions exposes children to fewer infections. It is thought that reduced bacterial and viral infections early in life direct the maturing immune system away from T1 type responses, leading to unrestrained T2 responses that allow for an increase in allergy.
Changes in rates and types of infection alone however, have been unable to explain the observed increase in allergic disease, and recent evidence has focused attention on the importance of the gastrointestinal microbial environment. Evidence has shown that exposure to food and fecal-oral pathogens, such as hepatitis A, "Toxoplasma gondii", and "Helicobacter pylori" (which also tend to be more prevalent in developing countries), can reduce the overall risk of atopy by more than 60%, and an increased rate of parasitic infections has been associated with a decreased prevalence of asthma. It is speculated that these infections exert their effect by critically altering T1/T2 regulation. Important elements of newer hygiene hypotheses also include exposure to endotoxins, exposure to pets and growing up on a farm.
Venom from stinging or biting insects such as Hymenoptera (ants, bees, and wasps) or Triatominae (kissing bugs) may cause anaphylaxis in susceptible people. Previous systemic reactions, which are anything more than a local reaction around the site of the sting, are a risk factor for future anaphylaxis; however, half of fatalities have had no previous systemic reaction.
Some examples:
- Allergic asthma
- Allergic conjunctivitis
- Allergic rhinitis ("hay fever")
- Anaphylaxis
- Angioedema
- Urticaria (hives)
- Eosinophilia
- Penicillin allergy
- Cephalosporin allergy
- Food allergy
- Sweet itch
Chronic stress can aggravate allergic conditions. This has been attributed to a T helper 2 (TH2)-predominant response driven by suppression of interleukin 12 by both the autonomic nervous system and the hypothalamic–pituitary–adrenal axis. Stress management in highly susceptible individuals may improve symptoms.
People with atopic diseases such as asthma, eczema, or allergic rhinitis are at high risk of anaphylaxis from food, latex, and radiocontrast agents but not from injectable medications or stings. One study in children found that 60% had a history of previous atopic diseases, and of children who die from anaphylaxis, more than 90% have asthma. Those with mastocytosis or of a higher socioeconomic status are at increased risk. The longer the time since the last exposure to the agent in question, the lower the risk.
Electromagnetic hypersensitivity (EHS) is a claimed sensitivity to electromagnetic fields, to which negative symptoms are attributed. EHS has no scientific basis and is not a recognised medical diagnosis. Claims are characterized by a "variety of non-specific symptoms, which afflicted individuals attribute to exposure to electromagnetic fields".
Those who are self-described with EHS report adverse reactions to electromagnetic fields at intensities well below the maximum levels permitted by international radiation safety standards. The majority of provocation trials to date have found that such claimants are unable to distinguish between exposure and non-exposure to electromagnetic fields. A systematic review in 2005 showed no convincing scientific evidence for symptoms being caused by electromagnetic fields. Since then, several double-blind experiments have shown that people who report electromagnetic hypersensitivity are unable to detect the presence of electromagnetic fields and are as likely to report ill health following a sham exposure as they are following exposure to genuine electromagnetic fields, suggesting the cause in these cases to be the nocebo effect.
A 2005 review by the UK Health Protection Agency and a 2006 systematic review each evaluated the evidence for various medical, psychological, behavioral, and alternative treatments for EHS and each found that the evidence-base was limited and not generalizable, but that the best evidence favored cognitive behavioural therapy. As of 2005, WHO recommended that people presenting with claims of EHS be evaluated to determine if they have a medical condition that may be causing the symptoms the person is attributing to EHS, that they have a psychological evaluation, and that the person's environment be evaluated for issues like air or noise pollution that may be causing problems.
Some people who feel they are sensitive to electromagnetic fields may seek to reduce their exposure or use alternative medicine. Government agencies have enforced false advertising claims against companies selling devices to shield against EM radiation.
The majority of individuals who receive a sting from an insect experience local reactions. It is estimated that 5-10% of individuals will experience a generalized systemic reaction that can involve symptoms ranging from hives to wheezing and even anaphylaxis. In the United States approximately 40 people die each year from anaphylaxis due to stinging insect allergy. Potentially life-threatening reactions occur in 3% of adults and 0.4–0.8% of children.
Samter's triad goes by several other names:
A sufferer who has not yet experienced asthma or aspirin sensitivity might be diagnosed as having:
- Non-allergic rhinitis
- Non-allergic rhinitis with eosinophilia syndrome (NARES)
Treatment usually involves adrenaline (epinephrine), antihistamines, and corticosteroids.
If the entire body is involved, then anaphylaxis can take place, which is an acute, systemic reaction that can prove fatal.
Aspirin-induced asthma, also termed Samter's triad, Samter's syndrome, aspirin-exacerbated respiratory disease (AERD), and recently by an appointed task force of the European Academy of Allergy and Clinical Immunology/World Allergy Organization (EAACI/WAO) Nonsteroidal anti-inflammatory drugs-exacerbated respiratory disease (N-ERD). is a medical condition initially defined as consisting of three key features: asthma, respiratory symptoms exacerbated by aspirin, and nasal/ethmoidal polyposis; however, the syndrome's symptoms are exacerbated by a large variety of other nonsteroidal anti-inflammatory drugs (NSAIDs) besides aspirin. The symptoms of respiratory reactions in this syndrome are hypersensitivity reactions to NSAIDs rather than the typically described true allergic reactions that trigger other common allergen-induced asthma, rhinitis, or hives. The NSAID-induced reactions do not appear to involve the common mediators of true allergic reactions, immunoglobulin E or T cells. Rather, AERD is a type of NSAID-induced hypersensitivity syndrome. EAACI/WHO classifies the syndrome as one of 5 types of NSAID hypersensitivity or NSAID hypersensitivity reactions.
NSAID or nonsteroidal anti-inflammatory drug hypersensitivity reactions encompasses a broad range of allergic or allergic-like symptoms that occur within minutes to hours after ingesting aspirin or other NSAID nonsteroidal anti-inflammatory drugs. Hypersensitivity drug reactions differ from drug toxicity reactions in that drug toxicity reactions result from the pharmacological action of a drug, are dose-related, and can occur in any treated individual (see nonsteroidal anti-inflammatory drugs section on adverse reactions for NSAID-induced toxic reactions); hypersensitivity reactions are idiosyncratic reactions to a drug. Although the term NSAID was introduced to signal a comparatively low risk of adverse effects, NSAIDs do evoke a broad range of hypersensitivity syndromes. These syndromes have recently been classified by the European Academy of Allergy and Clinical Immunology Task Force on NSAIDs Hypersensitivity. The classification organizes the hypersensitivity reactions to NSAIDs into the following five categories:
- 1) NSAIDs-exacerbated respiratory disease (NERD) is an acute (immediate to several hours) exacerbation of bronchoconstriction and other symptoms of asthma (see aspirin-induced asthma) in individuals with a history of asthma and/or nasal congestion, rhinorrhea or other symptoms of rhinitis and sinusitis in individuals with a history of rhinosinusitis after ingestion of various NSAIDs, particularly those that act by inhibiting the COX-1 enzyme. NERD does not appear to be due to a true allergic reaction to NSAIDs but rather at least in part to the more direct effects of these drugs to promote the production and/or release of certain mediators of allergy. That is, inhibition of cellular COX activity deprives tissues of its anti-inflammatory product(s), particularly prostaglandin E2 while concurrently shuttling its substrate, arachidonic acid, into other metabolizing enzymes, particularly 5-lipoxygenase (ALOX5) to overproduce pro-inflammatory leukotriene and 5-Hydroxyicosatetraenoic acid metabolites and 15-lipoxygenase (ALOX15) to overproduce pro-inflammatory 15-Hydroxyicosatetraenoic acid metabolites, including eoxins; the condition is also associated with a reduction in the anti-inflammatory metabolite, lipoxin A4, and increases in certain pro-allergic chemokines such as eotaxin-2 and CCL7.
- 2) NSAIDs-exacerbated cutaneous disease (NECD) is an acute exacerbation of wheals and/or angioedema in individuals with a history of chronic urticaria. NECD also appears due to the non-allergic action of NSAIDs in inhibiting the production of COX anti-inflammatory metabolites while promoting the production 5-lipoxygenase and 15-lipoxygenase pro-inflammatory metabolites and the overproduction of certain pro-allergic chemokines, e.g. eotaxin-1, eotaxin-2, RANTES, and interleukin-5.
- 3) NSAIDs-induced urticarial disease (NEUD) is the acute development of wheals and/or angioedema in individuals with no history of chronic NSAIDs-induced urticaria or related diseases. The mechanism behind NEUD is unknown but may be due to the non-allergic action of NSAIDs in promoting the production and/or release of allergy mediators.
- 4) Single NSAID-induced urticarial/angioedema or anaphylaxis (SNIUAA) is the acute development of urticarial, angioedema, or anaphylaxis in response to a single type of NSAID and/or a single group of NSAIDs with a similar structure but not to other structurally unrelated NSAIDs in individuals with no history of underlying relevant chronic diseases. SNIUAA is due to a true IgE-mediated allergy reaction.
- 5 Single NSAID-induced delayed reactions (SNIDR) are a set of delayed onset (usually more than 24 hour) reactions to NSAIDs. SNIDR are most commonly skin reactions that may be relatively mild moderately severe such as maculopapular rash, fixed drug eruptions, photosensitivity reactions, delayed urticaria, and contact dermatitis or extremely severe such as the DRESS syndrome, acute generalized exanthematous pustulosis, the Stevens–Johnson syndrome, and toxic epidermal necrolysis (also termed Lyell's syndrome). SNIDR result from the drug-specific stimulation of CD4+ T lymphocytes and CD8+ cytotoxic T cells to elicit a delayed type hypersensitivity reaction.
It is estimated that 2—3 percent of hospitalised patients are affected by a drug eruption, and that serious drug eruptions occur in around 1 in 1000 patients.
Drugs that commonly induce DRESS syndrome include phenobarbital, carbamazepine, phenytoin, lamotrigine, minocycline, sulfonamides, allopurinol, modafinil, dapsone, ziprasidone, vancomycin, and most recently olanzapine.
It has been associated with HHV-6 reactivation.
Atopic reactions are caused by localized hypersensitivity reaction to an allergen. Atopy appears to show a strong hereditary component. One study concludes that the risk of developing atopic dermatitis (3%) or atopy in general (7%) "increases by a factor of two with each first-degree family member already suffering from atopy". As well, maternal stress and perinatal programming is increasingly understood as a root cause of atopy, finding that "...trauma may be a particularly robust potentiator of the cascade of biological events that increase vulnerability to atopy and may help explain the increased risk found in low-income urban populations.”
Environmental factors are also thought to play a role in the development of atopy, and the 'hygiene hypothesis' is one of the models that may explain the steep rise in the incidence of atopic diseases, though this hypothesis is incomplete and in some cases, contradictory to findings. This hypothesis proposes that excess 'cleanliness' in an infant's or child's environment can lead to a decline in the number of infectious stimuli that are necessary for the proper development of the immune system. The decrease in exposure to infectious stimuli may result in an imbalance between the infectious-response ("protective") elements and the allergic-response ("false alarm") elements within the immune system.
Some studies also suggest that the maternal diet during pregnancy may be a causal factor in atopic diseases (including asthma) in offspring, suggesting that consumption of antioxidants, certain lipids, and/or a Mediterranean diet may help to prevent atopic diseases.
The multicenter PARSIFAL study in 2006, involving 6630 children age 5 to 13 in 5 European countries, suggested that reduced use of antibiotics and antipyretics is associated with a reduced risk of allergic disease in children.
The Arthus reaction involves the in situ formation of antigen/antibody complexes after the intradermal injection of an antigen. If the animal/patient was previously sensitized (has circulating antibody), an Arthus reaction occurs. Typical of most mechanisms of the type III hypersensitivity, Arthus manifests as local vasculitis due to deposition of IgG-based immune complexes in dermal blood vessels. Activation of complement primarily results in cleavage of soluble complement proteins forming C5a and C3a, which activate recruitment of PMNs and local mast cell degranulation (requiring the binding of the immune complex onto FcγRIII), resulting in an inflammatory response. Further aggregation of immune complex-related processes induce a local fibrinoid necrosis with ischemia-aggravating thrombosis in the tissue vessel walls. The end result is a localized area of redness and induration that typically lasts a day or so.
Arthus reactions have been infrequently reported after vaccinations containing diphtheria and tetanus toxoid. The CDC's description:
Arthus reactions (type III hypersensitivity reactions) are rarely reported after vaccination and can occur after tetanus toxoid–containing or diphtheria toxoid–containing vaccines. An Arthus reaction is a local vasculitis associated with deposition of immune complexes and activation of complement. Immune complexes form in the setting of high local concentration of vaccine antigens and high circulating antibody concentration. Arthus reactions are characterized by severe pain, swelling, induration, edema, hemorrhage, and occasionally by necrosis. These symptoms and signs usually occur 4–12 hours after vaccination. ACIP has recommended that persons who experienced an Arthus reaction after a dose of tetanus toxoid–containing vaccine should not receive Td more frequently than every 10 years, even for tetanus prophylaxis as part of wound management.
The culprit can be both a prescription drug or an over-the-counter medication.
Examples of common drugs causing drug eruptions are antibiotics and other antimicrobial drugs, sulfa drugs, nonsteroidal anti-inflammatory drugs (NSAIDs), biopharmaceuticals, chemotherapy agents, anticonvulsants, and psychotropic drugs. Common examples include photodermatitis due to local NSAIDs (such as piroxicam) or due to antibiotics (such as minocycline), fixed drug eruption due to acetaminophen or NSAIDs (Ibuprofen), and the rash following ampicillin in cases of mononucleosis.
Certain drugs are less likely to cause drug eruptions (rates estimated to be ≤3 per 1000 patients exposed). These include: digoxin, aluminum hydroxide, multivitamins, acetaminophen, bisacodyl, aspirin, thiamine, prednisone, atropine, codeine, hydrochlorothiazide, morphine, insulin, warfarin, and spironolactone.
Drug reaction with eosinophilia and systemic symptoms (DRESS syndrome) is caused by exposure to certain medications that may result in a rash, fever, inflammation of internal organs, lymphadenopathy, and characteristic hematologic abnormalities such as eosinophilia, thrombocytopenia, and atypical lymphocytosis. The syndrome has about a 10% mortality. Treatment consists of stopping the offending medication and providing supportive care. Systemic steroids are commonly used, as well, but no controlled clinical trials assess the efficacy of this treatment.
The term was coined in a 1996 report in an attempt to simplify terminology for a syndrome recognized as early as 1959.
Sulfonamide hypersensitivity syndrome is similar to anticonvulsant hypersensitivity syndrome, but the onset is often sooner in the treatment course, generally after 7–14 days of therapy.
It is considered immune-mediated.
An example of a tuberculosis (TB) infection that comes under control: "M. tuberculosis" cells are engulfed by macrophages after being identified as foreign, but due to an immuno-escape mechanism peculiar to mycobacteria, TB bacteria are able to block the fusion of their enclosing phagosome with lysosomes which would destroy the bacteria. Thereby TB can continue to replicate within macrophages. After several weeks, the immune system somehow [mechanism as yet unexplained] ramps up and, on stimulation with IFN-gamma, the macrophages become capable of killing "M. tuberculosis" by forming phagolysosomes and nitric oxide radicals. The hyper-activated macrophages secrete TNF-α which recruits multiple monocytes to the site of infection. These cells differentiate into epithelioid cells which wall off the infected cells, but results in significant inflammation and local damage.
Some other clinical examples:
- Temporal arteritis
- Leprosy
- Coeliac disease
- Graft-versus-host disease
- Chronic transplant rejection
A hypersensitivity reaction to specific allergens (protein molecules causing an extreme immune response in sensitised individuals) in the saliva of "Culicoides" midges. There are multiple allergens involved, although some workers claim that the larger proteins (of molecular weight 65kDa) are the most important. These allergens appear to be cross-reactive across many species of "Culicoides" - i.e. many different varieties of midges produce similar allergens, giving the same effects upon horses.
The hypersensitivity response is mediated by IgE, an antibody produced by the horse's immune system which binds the allergens, causing a cascade production of histamine and cytokines which make the horse's skin inflamed and itchy. Of these, histamine appears the most important in the initial phase of reaction.
In adults, the prevalence of IgE sensitization to allergens from house dust mite and cat, but not grass, seem to decrease over time as people age. However, the biological reasons for these changes are not fully understood.
Hypersensitivity (also called hypersensitivity reaction or intolerance) is a set of undesirable reactions produced by the normal immune system, including allergies and autoimmunity. They are usually referred to as an over- reaction of the immune system and these reactions may be damaging, uncomfortable, or occasionally fatal. Hypersensitivity reactions require a pre-sensitized (immune) state of the host. They are classified in four groups after the proposal of P. G. H. Gell and Robin Coombs in 1963.