Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In the United States, fire and hot liquids are the most common causes of burns. Of house fires that result in death, smoking causes 25% and heating devices cause 22%. Almost half of injuries are due to efforts to fight a fire. Scalding is caused by hot liquids or gases and most commonly occurs from exposure to hot drinks, high temperature tap water in baths or showers, hot cooking oil, or steam. Scald injuries are most common in children under the age of five and, in the United States and Australia, this population makes up about two-thirds of all burns. Contact with hot objects is the cause of about 20–30% of burns in children. Generally, scalds are first- or second-degree burns, but third-degree burns may also result, especially with prolonged contact. Fireworks are a common cause of burns during holiday seasons in many countries. This is a particular risk for adolescent males.
The prognosis is worse in those with larger burns, those who are older, and those who are females. The presence of a smoke inhalation injury, other significant injuries such as long bone fractures, and serious co-morbidities (e.g. heart disease, diabetes, psychiatric illness, and suicidal intent) also influence prognosis. On average, of those admitted to United States burn centers, 4% die, with the outcome for individuals dependent on the extent of the burn injury. For example, admittees with burn areas less than 10% TBSA had a mortality rate of less than 1%, while admittees with over 90% TBSA had a mortality rate of 85%. In Afghanistan, people with more than 60% TBSA burns rarely survive. The Baux score has historically been used to determine prognosis of major burns. However, with improved care, it is no longer very accurate. The score is determined by adding the size of the burn (% TBSA) to the age of the person, and taking that to be more or less equal to the risk of death. Burns in 2013 resulted in 1.2 million years lived with disability and 12.3 million disability adjusted life years.
A person can cause frostbite by accidental prolonged contact, using an aerosol on one place for too long. This is often done with deodorants, but other products such as asthma inhalers are also common causes of injury. Injuries are especially common with younger children who "try it out" not knowing all the possible dermatological effects. In rarer cases aerosol burns are reported to have been caused by air fresheners and other compressed aerosol canisters exploding.
Fluorinated hydrocarbon (fluorocarbon) aerosol propellants can be abused, as with solvents. A common form is huffing as a means of intoxication. When inhaled, aerosols can cause the same frostbite as on other parts of the body. The National Institute on Drug Abuse (NIDA) has published various resources on the internet warning of the effects of this abuse, including content especially for teenagers and young people in apparent response to the increase in incidents in this age group.
Some aerosol burns are intentionally self-inflicted, the reasons being emotional/psychological. Household aerosol products such as air fresheners and deodorants can be a convenient, easily available means to satisfy the compulsions.
Radiation burns are caused by exposure to high levels of radiation. Levels high enough to cause burn are generally lethal if received as a whole-body dose, whereas they may be treatable if received as a shallow or local dose.
Fluoroscopy may cause burns if performed repeatedly or for too long.
Similarly, Computed Tomography and traditional Projectional Radiography have the potential to cause radiation burns if the exposure factors and exposure time are not appropriately controlled by the operator.
A study of radiation induced skin injuries has been performed by the Food and Drug Administration (FDA) based on results from 1994, followed by an advisory to minimize further fluoroscopy-induced injuries. The problem of radiation injuries due to fluoroscopy has been further investigated in review articles in 2000, 2001, 2009 and 2010.
Fire breather’s pneumonia is caused by the entrance of hydrocarbon fuels into the bronchial tree, usually due to accidental aspiration or inhalation during a fire performance show. Fire breathing, or fire blowing, is the act of creating a plume of fire by blowing a mouthful of fuel in a fine mist (atomization) over a source of ignition. Fire eating, or fire swallowing, is the act of putting a flaming object into the mouth and extinguishing it.
In both disciplines, the performer holds their breath until the air is clear of vapors, so as to not inhale the hazardous fumes. However, improper technique or an accident can lead to ingestion, inhalation, or aspiration of fine droplets or vapors. Fire breathing and fire eating are separate acts, but the terms are sometimes erroneously used interchangeably in the literature.
Fuel ingestion can also occur due to siphoning by mouth of fuel products.
Once inhaled, these fuels induce an inflammatory reaction in lung tissue. They are not metabolized by tissue enzymes, but undergo emulsification and become engulfed by macrophages which, with time, may disintegrate and release oily substances surrounded by fibrous tissue and giant cells.
Carbon monoxide (CO) is presumed to be a complication in smoke inhalation. The initial approach to presumed CO poisoning involves administering supplemental oxygen at a fraction of inspired oxygen (FiO2) of 100 percent and then the use of hyperbaric oxygen (HBO) therapy is evaluated by physicians.
Smoke inhalation is the primary cause of death for victims of indoor fires. The inhalation or exposure to hot gaseous products of combustion can cause serious respiratory complications.
Some 50–80% of fire deaths are the result of smoke inhalation injuries, including burns to the respiratory system. The hot smoke injures or kills by a combination of thermal damage, poisoning and pulmonary irritation and swelling, caused by carbon monoxide, cyanide and other combustion products.
Fire breathing is typically performed with a high flash point fuel, such as lamp oil (liquid paraffin), while fire eating is performed with low flash point fuels, such as white gas or naphtha. Highly purified fuels are preferred by fire performers due to their minimized toxicity, but other, more dangerous fuels may sometimes be used, such as ethanol, isopropanol, kerosene, gasoline, or charcoal lighter fluid. All fuels run the risk of causing pneumonitis if inhaled, however longer chain oils are more persistent than smaller molecules. Alcohols and volatile naphthas are likely to be absorbed or expelled from the body by evaporation and respiration.
Tobacco smoke is a known carcinogen. Workers in the hospitality industry may be exposed to tobacco smoke in the workplace, especially in environments like casinos and bars/restaurants.
Health care professionals are at risk of occupational influenza exposure; during a pandemic influenza, anyone in a close environment is at risk, including those in an office environment.
A common exposure involves accidental mixing of household ammonia with cleansers containing bleach, causing the irritant gas chloramine to be released.
Sulfur mustard was used as a chemical weapon in World War I and more recently in the Iran–Iraq War. Sulfur mustard is a vesicant alkylating agent with strong cytotoxic, mutagenic, and carcinogenic properties. After exposure, victims show skin irritations and blisters. This agent also causes respiratory tract lesions, bone marrow depression, and eye damage, the epithelial tissues of these organs being predominately affected. Inhalation of high doses of this gas causes lesions in the larynx, trachea, and large bronchi with inflammatory reactions and necrosis. The alkylating agent affects more the upper parts of the respiratory tract, and only intensely exposed victims showed signs like bronchiolitis obliterans in the distal part. Secondary effects of sulfur mustard exposure lead to chronic lung diseases such as chronic bronchitis.
In Belgium, the Conseil Supérieur de la Santé gives a scientific advisory report on public health policy, the Superior Health Council of Belgium provides an overview of products that are authorized in Belgium for consumer use and that contain caustic substances, as well as of the risks linked to exposure to these products. This report aims at suggesting protection measures for the consumers, and formulates recommendations that apply to the different stages of the chain, which begins with the formulation of the product, followed by its regulation / marketing / application and post-application and ends with its monitoring.
The exact symptoms of a chemical burn depend on the chemical involved. Symptoms include itching, bleaching or darkening of skin, burning sensations, trouble breathing, coughing blood and/or tissue necrosis. Common sources of chemical burns include sulfuric acid (HSO), hydrochloric acid (HCl), sodium hydroxide (NaOH), lime (CaO), silver nitrate (AgNO), and hydrogen peroxide (HO). Effects depend on the substance; hydrogen peroxide removes a bleached layer of skin, while nitric acid causes a characteristic color change to yellow in the skin, and silver nitrate produces noticeable black stains. Chemical burns may occur through direct contact on body surfaces, including skin and eyes, via inhalation, and/or by ingestion. Lipophilic substances that diffuse efficiently in human tissue, e.g., hydrofluoric acid, sulfur mustard, and dimethyl sulfate, may not react immediately, but instead produce the burns and inflammation hours after the contact. Chemical fabrication, mining, medicine, and related professional fields are examples of occupations where chemical burns may occur. Hydrofluoric acid leaches into the bloodstream and reacts with calcium and magnesium, and the resulting salts can cause cardiac arrest after eating through skin.
There are many industrial inhalants that are known to cause various types of bronchiolitis, including bronchiolitis obliterans.
Industrial workers who have presented with bronchiolitis:
- nylon-flock workers
- workers who spray prints onto textiles with polyamide-amine dyes
- battery workers who are exposed to thionyl chloride fumes
- workers at plants that use or manufacture flavorings, e.g. diacetyl butter-like flavoring
Bronchiolitis obliterans has many possible causes, including collagen vascular disease, transplant rejection in organ transplant patients, viral infection (respiratory syncytial virus, adenovirus, HIV, cytomegalovirus), Stevens-Johnson syndrome, Pneumocystis pneumonia, drug reaction, aspiration and complications of prematurity (bronchopulmonary dysplasia), and exposure to toxic fumes, including diacetyl, sulfur dioxide, nitrogen dioxide, ammonia, chlorine, thionyl chloride, methyl isocyanate, hydrogen fluoride, hydrogen bromide, hydrogen chloride, hydrogen sulfide, phosgene, polyamide-amine dyes, mustard gas and ozone. It can also be present in patients with rheumatoid arthritis. Certain orally administrated emergency medications, such as activated charcoal, have been known to cause it when aspirated. The ingestion of large doses of papaverine in the vegetable Sauropus androgynus has caused it. Additionally, the disorder may be idiopathic (without known cause).
The number of workers in the United States exposed to beryllium vary but has been estimated to be as high as 800,000 during the 1960s and 1970s. A more recent study estimated the number of exposed workers in the United States from in 1996 to be around 134,000.
The rate of workers becoming sensitized to beryllium varies based on genetics and exposure levels. In one study researchers found the prevalence of beryllium sensitization to range from 9 - 19% depending on the industry. Many workers who are found to be sensitive to beryllium also meet the diagnostic criteria for CBD. In one study of nuclear workers, among those who were sensitized to beryllium, 66% were found to have CBD as well. The rate of progression from beryllium sensitization to CBD has been estimated to be approximately 6-8% per year. Stopping exposure to beryllium in those sensitized has not been definitively shown to stop the progression to CBD.
The overall prevalence of CBD among workers exposed to beryllium has ranged from 1 – 5% depending on industry and time period of study.
The general population is unlikely to develop acute or chronic beryllium disease because ambient air levels of beryllium are normally very low (<0.03 ng/m). However, a study found 1% of people living within 3/4 of a mile of a beryllium plant in Lorain, Ohio, had berylliosis after exposure to concentrations estimated to be less than 1 milligram per cubic metre of air. In the United States the Beryllium Case Registry contained 900 records, early cases relating to extraction and fluorescent lamp manufacture, later ones coming from the aerospace, ceramics and metallurgical industries.
It can be classified into acute interstitial pneumonitis, blood pneumonitis, lymphocytic interstitial pneumonitis, radiation pneumonitis, and uremic pneumonitis.
More than 70% of cases are recorded in people with at least one of the following clinical situations: immunosuppression, diabetes, alcoholism/drug abuse/smoking, malignancies, and chronic systemic diseases. For reasons that are unclear, it occasionally occurs in people with an apparently normal general condition.
The infection begins locally at a site of trauma, which may be severe (such as the result of surgery), minor, or even non-apparent.
Lycoperdonosis is a respiratory disease caused by the inhalation of large amounts of spores from mature puffballs. It is classified as a hypersensitivity pneumonitis (also called extrinsic allergic alveolitis)—an inflammation of the alveoli within the lung caused by hypersensitivity to inhaled natural dusts. It is one of several types of hypersensitivity pneumonitis caused by different agents that have similar clinical features. Typical progression of the disease includes symptoms of a cold hours after spore inhalation, followed by nausea, rapid pulse, crepitant rales (a sound like that made by rubbing hairs between the fingers, heard at the end of inhalation), and dyspnea. Chest radiographs reveal the presence of nodules in the lungs. The early symptoms presented in combination with pulmonary abnormalities apparent on chest radiographs may lead to misdiagnosis of the disease as tuberculosis, histiocytosis, or pneumonia caused by "Pneumocystis carinii". Lycoperdonosis is generally treated with corticosteroids, which decrease the inflammatory response; these are sometimes given in conjunction with antimicrobials.
The disease was first described in the medical literature in 1967 by R.D. Strand and colleagues in the "New England Journal of Medicine". In 1976, a 4-year-old was reported developing the disease in Norway after purposely inhaling a large quantity of "Lycoperdon" spores to stop a nosebleed. "Lycoperdon" species are sometimes used in folk medicine in the belief that their spores have haemostatic properties. A 1997 case report discussed several instances of teenagers inhaling the spores. In one severe case, the individual inhaled enough spores so as to be able to blow them out of his mouth. He underwent bronchoscopy and then had to be on life support before recovering in about four weeks. In another instance, a teenager spent 18 days in a coma, had portions of his lung removed, and suffered severe liver damage. In Wisconsin, eight teenagers who inhaled spores at a party presented clinical symptoms such as cough, fever, shortness of breath, myalgia, and fatigue within a week. Five of the eight required hospitalization; of these, two required intubation to assist in breathing. The disease is rare, possibly because of the large quantity of spores that need to be inhaled for clinical effects to occur. Lycoperdonosis also occurs in dogs; in the few reported cases, the animals had been playing or digging in areas known to contain puffballs. Known species of puffballs implicated in the etiology of the published cases include the widespread "Lycoperdon perlatum" (the "devil's snuff-box", "L. gemmatum") and "Calvatia gigantea", both of the Lycoperdaceae family.
Endogenous lipoid pneumonia and non-specific interstitial pneumonitis has been seen prior to the development of pulmonary alveolar proteinosis in a child.
Sources of such lipids could be either exogenous or endogenous.
Exogenous: from outside the body. For example, inhaled nose drops with an oil base, or accidental inhalation of cosmetic oil. Amiodarone is an anti-arrythmic known to cause this condition. Oil pulling has also been shown to be a cause. At risk populations include the elderly, developmentally delayed or persons with gastroesophageal reflux. Switching to water-soluble alternatives may be helpful in some situations.
Endogenous: from the body itself, for example, when an airway is obstructed, it is often the case that distal to the obstruction, lipid-laden macrophages (foamy macrophages) and giant cells fill the lumen of the disconnected airspace.
Common organisms include Group A "Streptococcus" (group A strep), "Klebsiella", "Clostridium", "Escherichia coli", "Staphylococcus aureus," and "Aeromonas hydrophila", and others. Group A strep is considered the most common cause of necrotizing fasciitis.
The majority of infections are caused by organisms that normally reside on the individual's skin. These skin flora exist as commensals and infections reflect their anatomical distribution (e.g. perineal infections being caused by anaerobes).
Sources of MRSA may include working at municipal waste water treatment plants, exposure to secondary waste water spray irrigation, exposure to run off from farm fields fertilized by human sewage sludge or septage, hospital settings, or sharing/using dirty needles. The risk of infection during regional anesthesia is considered to be very low, though reported.
Vibrio vulnificus, a bacterium found in saltwater, is a rare cause.