Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Smoking tobacco appears to increase the risk of breast cancer, with the greater the amount smoked and the earlier in life that smoking began, the higher the risk. In those who are long-term smokers, the risk is increased 35% to 50%. A lack of physical activity has been linked to about 10% of cases. Sitting regularly for prolonged periods is associated with higher mortality from breast cancer. The risk is not negated by regular exercise, though it is lowered.
There is an association between use of hormonal birth control and the development of premenopausal breast cancer, but whether oral contraceptives use may actually cause premenopausal breast cancer is a matter of debate. If there is indeed a link, the absolute effect is small. Additionally, it is not clear if the association exists with newer hormonal birth controls. In those with mutations in the breast cancer susceptibility genes "BRCA1" or "BRCA2", or who have a family history of breast cancer, use of modern oral contraceptives does not appear to affect the risk of breast cancer.
The association between breast feeding and breast cancer has not been clearly determined; some studies have found support for an association while others have not. In the 1980s, the abortion–breast cancer hypothesis posited that induced abortion increased the risk of developing breast cancer. This hypothesis was the subject of extensive scientific inquiry, which concluded that neither miscarriages nor abortions are associated with a heightened risk for breast cancer.
A number of dietary factors have been linked to the risk for breast cancer. Dietary factors which may increase risk include a high fat diet, high alcohol intake, and obesity-related high cholesterol levels. Dietary iodine deficiency may also play a role. Evidence for fiber is unclear. A 2015 review found that studies trying to link fiber intake with breast cancer produced mixed results. In 2016 a tentative association between low fiber intake during adolescence and breast cancer was observed.
Other risk factors include radiation and shift-work. A number of chemicals have also been linked, including polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and organic solvents Although the radiation from mammography is a low dose, it is estimated that yearly screening from 40 to 80 years of age will cause approximately 225 cases of fatal breast cancer per million women screened.
Risk factors can be divided into two categories:
- "modifiable" risk factors (things that people can change themselves, such as consumption of alcoholic beverages), and
- "fixed" risk factors (things that cannot be changed, such as age and biological sex).
The primary risk factors for breast cancer are being female and older age. Other potential risk factors include genetics, lack of childbearing or lack of breastfeeding, higher levels of certain hormones, certain dietary patterns, and obesity. Recent studies have indicated that exposure to light pollution is a risk factor for the development of breast cancer.
Triple-negative breast cancer accounts for approximately 15%-25% of all breast cancer cases. The overall proportion of TNBC is very similar in all age groups. Younger women have a higher rate of basal or BRCA related TNBC while older women have a higher proportion of apocrine, normal-like and rare subtypes including neuroendocrine TNBC.
Among younger women, African American and Hispanic women have a higher risk of TNBC, with African Americans facing worse prognosis than other ethnic groups.
In 2009, a case-control study of 187 triple-negative breast cancer patients described a 2.5 increased risk for triple-negative breast cancer in women who used oral contraceptives (OCs) for more than one year compared to women who used OCs for less than one year or never. The increased risk for triple-negative breast cancer was 4.2 among women 40 years of age or younger who used OCs for more than one year, while there was no increased risk for women between the ages of 41 and 45. Also, as duration of OC use increased, triple-negative breast cancer risk increased.
In some population studies moderate alcohol consumption is associated with increase the breast cancer risk.
In contrast, research by the Danish National Institute for Public Health, comprising 13,074 women aged 20 to 91 years, found that moderate drinking had virtually no effect on breast cancer risk.
Studies that control for screening incidence show no association with moderate drinking and breast cancer, e.g.. Moderate drinkers tend to screen more which results in more diagnoses of breast cancer, including mis-diagnoses. A recent study of 23 years of breast cancer screening in the Netherlands concluded that 50% of diagnoses were over-diagnoses.
The specific causes of DCIS are still unknown. The risk factors for developing this condition are similar to those for invasive breast cancer.
Some women are however more prone than others to developing DCIS. Women considered at higher risks are those who have a family history of breast cancer, those who have had their periods at an early age or who have had a late menopause. Also, women who have never had children or had them late in life are also more likely to get this condition.
Long-term use of estrogen-progestin hormone replacement therapy (HRT) for more than five years after menopause, genetic mutations (BRCA1 or BRCA2 genes), atypical hyperplasia, as well as radiation exposure or exposure to certain chemicals may also contribute in the development of the condition. Nonetheless, the risk of developing noninvasive cancer increases with age and it is higher in women older than 45 years.
A meta analysis of cohort studies of alcohol consumption and breast cancer mortality showed no association between alcohol consumption before or after breast cancer diagnosis and recurrence after treatment.
Cancer prevention is defined as active measures to decrease cancer risk. The vast majority of cancer cases are due to environmental risk factors. Many of these environmental factors are controllable lifestyle choices. Thus, cancer is generally preventable. Between 70% and 90% of common cancers are due to environmental factors and therefore potentially preventable.
Greater than 30% of cancer deaths could be prevented by avoiding risk factors including: tobacco, excess weight/obesity, poor diet, physical inactivity, alcohol, sexually transmitted infections and air pollution. Not all environmental causes are controllable, such as naturally occurring background radiation and cancers caused through hereditary genetic disorders and thus are not preventable via personal behavior.
It occurs in all adult age groups. While the majority of patients are between 40 and 59 years old, age predilection is much less pronounced than in noninflammatory breast cancer. The overall rate is 1.3 cases per 100000, black women (1.6) have the highest rate, Asian and Pacific Islander women the lowest (0.7) rates.
Most known breast cancer risk predictors do not apply for inflammatory breast cancer. It may be slightly associated with cumulative breast-feeding duration.
LCIS (lobular neoplasia is considered pre-cancerous) is an indicator (marker) identifying women with an increased risk of developing invasive breast cancer. This risk extends more than 20 years. Most of the risk relates to subsequent invasive ductal carcinoma rather than to invasive lobular carcinoma.
While older studies have shown that the increased risk is equal for both breasts, a more recent study suggests that the ipsilateral (same side) breast may be at greater risk.
Up to 10% of invasive cancers are related to radiation exposure, including both ionizing radiation and non-ionizing ultraviolet radiation. Additionally, the majority of non-invasive cancers are non-melanoma skin cancers caused by non-ionizing ultraviolet radiation, mostly from sunlight. Sources of ionizing radiation include medical imaging and radon gas.
Ionizing radiation is not a particularly strong mutagen. Residential exposure to radon gas, for example, has similar cancer risks as passive smoking. Radiation is a more potent source of cancer when combined with other cancer-causing agents, such as radon plus tobacco smoke. Radiation can cause cancer in most parts of the body, in all animals and at any age. Children and adolescents are twice as likely to develop radiation-induced leukemia as adults; radiation exposure before birth has ten times the effect.
Medical use of ionizing radiation is a small but growing source of radiation-induced cancers. Ionizing radiation may be used to treat other cancers, but this may, in some cases, induce a second form of cancer. It is also used in some kinds of medical imaging.
Prolonged exposure to ultraviolet radiation from the sun can lead to melanoma and other skin malignancies. Clear evidence establishes ultraviolet radiation, especially the non-ionizing medium wave UVB, as the cause of most non-melanoma skin cancers, which are the most common forms of cancer in the world.
Non-ionizing radio frequency radiation from mobile phones, electric power transmission and other similar sources have been described as a possible carcinogen by the World Health Organization's International Agency for Research on Cancer. However, studies have not found a consistent link between mobile phone radiation and cancer risk.
80% of cases in the United States are diagnosed by mammography screening.
Alcohol is a risk factor for breast cancer in women.
A woman drinking an average of two units of alcohol per day has an 8% higher risk of developing breast cancer than a woman who drinks an average of one unit of alcohol per day. A study concluded that for every additional drink regularly consumed per day, the incidence of breast cancer increases by 11 per 1000. Approximately 6% (between 3.2% and 8.8%) of breast cancers reported in the UK each year could be prevented if drinking was reduced to a very low level (i.e. less than 1 unit/week). Moderate to heavy consumption of alcoholic beverages (at least three to four drinks per week) is associated with a 1.3-fold increased risk of the recurrence of breast cancer. Further, consumption of alcohol at any quantity is associated with significantly increased risk of relapse in breast cancer survivors.
About one percent of breast cancer develops in males. It is estimated that about 2,140 new cases are diagnosed annually in the United States (US) and about 300 in the United Kingdom (UK). The number of annual deaths in the US is about 440 (for 2016 "but fairly stable over the last 30 years"). In a study from India, eight out of 1,200 (0.7%) male cancer diagnoses in a pathology review represented breast cancer. Incidence of male breast cancer has been increasing which raises the probability of other family members developing the disease. The relative risk of breast cancer for a female with an affected brother is approximately 30% higher than for a female with an affected sister. The tumor can occur over a wide age range, but typically appears in males in their sixties and seventies.
Known risk factors include radiation exposure, exposure to female hormones (estrogen), and genetic factors. High estrogen exposure may occur by medications, obesity, or liver disease, and genetic links include a high prevalence of female breast cancer in close relatives. Chronic alcoholism has been linked to male breast cancer. The highest risk for male breast cancer is carried by males with Klinefelter syndrome. Male BRCA mutation carriers are thought to be at higher risk for breast cancer as well, with roughly 10% of male breast cancer cases carrying BRCA2 mutations, and BRCA1 mutation being in the minority.
Drinking may be a cause of earlier onset of colorectal cancer. The evidence that alcohol is a cause of bowel cancer is convincing in men and probable in women.
The National Institutes of Health, the National Cancer Institute, Cancer Research, the American Cancer Society, the Mayo Clinic, and the Colorectal Cancer Coalition, American Society of Clinical Oncology and the Memorial Sloan-Kettering Cancer Center list alcohol as a risk factor.
A WCRF panel report finds the evidence "convincing" that alcoholic drinks increase the risk of colorectal cancer in men at consumption levels above 30 grams of absolute alcohol daily. The National Cancer Institute states, "Heavy alcohol use may also increase the risk of colorectal cancer"
A 2011 meta-analysis found that alcohol consumption was associated with an increased risk of colorectal cancer.
Most people with cancer of unknown primary origin have widely disseminated and incurable disease, although a few can be cured through treatment. With treatment, typical survival with CUP ranges from 6 to 16 months. Survival rates are lower in cases with visceral metastatic disease, ranging from 6 to 9 months. Survival rates are higher when the cancer is more limited to lymph nodes, pleura, or peritoneal metastasis, which ranges from 14 to 16 months. Long-term prognosis is somewhat better if a particular source of cancer is strongly suggested by clinical evidence.
The median age at diagnosis is 38 years. Women are at higher risk for developing breast cancer.
One known cause of triple negative breast cancer is germline mutations. These are alterations within the heritable lineage that is being passed down to the offspring. 15% of TNBC can be traced back to germline mutations that are within the BRCA1 and BRCA2 genes (Song 2014). These genes were identified as high risk for triple negative due to their high predisposition for cancers of the breasts, ovaries, pancreas, and prostate (Pruss 2014). Changes or mutations in 19p13.1 and MDM4 loci have also been associated with triple negative breast cancer, but not other forms of breast cancer, thus triple negative tumors may be distinguished from other breast cancer subtypes by a unique pattern of common and rare germline alterations (Kristen 2013).
Invasive lobular carcinoma accounts for 5-10% of invasive breast cancer.
The histologic patterns include:
Overall, the five-year survival rate of invasive lobular carcinoma was approximately 85% in 2003.
Loss of E-cadherin is common in lobular carcinoma but is also seen in other breast cancers.
Treatment includes surgery and adjuvant therapy.
CUP sometimes runs in families. It has been associated with familial lung, kidney, and colorectal cancers, which suggests that these sites may often be the origin of unidentifiable CUP cancers.
LCIS may be treated with close clinical follow-up and mammographic screening, tamoxifen or related hormone controlling drugs to reduce the risk of developing cancer, or bilateral prophylactic mastectomy. Some surgeons consider bilateral prophylactic mastectomy to be overly aggressive treatment except for certain high-risk cases.
Krukenberg tumors can be seen in all age groups, with an average age of 45 years. In most countries, cancer that has metastasized to the ovary accounts for only about 1 to 2% of ovarian cancer; in the remainder, the ovary itself is the primary cancer site. However, in Japan they represent a much higher percentage of malignancies in the ovary (almost 20%) due to the increased prevalence of gastric cancer.
Krukenberg tumors account for about 15% of metastatic cancers that initially appear to have arisen in the ovary, and as such is less common than metastasis arising from ovarian epithelial and germ-cell tumors.
In people who have had nongynecologic malignancy, approximately 20% of adnexal masses are malignant, and 60% of these are Krukenberg tumors.
A number of genes are associated with HBOC. The most common of the known causes of HBOC are:
- BRCA mutations: Harmful mutations in the "BRCA1" and "BRCA2" genes can produce very high rates of breast and ovarian cancer, as well as increased rates of other cancers.
Other identified genes include:
- "TP53": Mutations cause Li-Fraumeni syndrome. It produces particularly high rates of breast cancer among younger women with mutated genes, and despite being rare, 4% of women with breast cancer under age 30 have a mutation in this gene.
- "PTEN": Mutations cause Cowden syndrome, which produces hamartomas (benign polyps) in the colon, skin growths, and other clinical signs, as well as an increased risk for many cancers.
- "CDH1": Mutations are associated with lobular breast cancer and gastric cancer.
- "STK11": Mutations produce Peutz–Jeghers syndrome. It is extremely rare, and creates a predisposition to breast cancer, intestinal cancer, and pancreatic cancer.
- "CHEK2": Approximately one out of 40 northern Europeans have a mutation in this gene, making it a common mutation. Considered a moderate-risk mutation, it may double or triple the carrier's lifetime risk of breast cancer, and also increase the risk of colon cancer and prostate cancer.
- "ATM": Mutations cause ataxia telangectasia; female carriers have approximately double the normal risk of developing breast cancer.
- "PALB2": Studies vary in their estimate of the risk from mutations in this gene. It may be moderate risk, or as high as "BRCA2".
Approximately 45% of HBOC cases involve unidentified genes, or multiple genes.
Age distribution and relation to breastfeeding duration is suggestive of some sort of involvement of hormones in the aetiology, however significant differences exist compared to normal breast cancer.
Typically IBC shows low levels of estrogen and progesterone receptor sensitivity, corresponding with poor outcome. In cases with positive estrogen receptor status antihormonal treatment is believed to improve outcome.
Paradoxically some findings suggest that especially aggressive phenotypes of IBC are characterised by high level of NF kappaB target gene expression which can be - under laboratory conditions - successfully modulated by estrogen, but not by tamoxifen.
Adjusted for age and stage the prognosis for breast cancer in males is similar to that in females. Prognostically favorable are smaller tumor size and absence or paucity of local lymph node involvement. Hormonal treatment may be associated with hot flashes and impotence.
Metastatic breast cancer, also referred to as metastases, advanced breast cancer, secondary tumours, secondaries or stage 4 breast cancer, is a stage of breast cancer where the disease has spread to distant sites beyond the axillary lymph nodes. There is no cure for metastatic breast cancer. There is no stage after IV.
It usually occurs several years after the primary breast cancer, although it is sometimes diagnosed at the same time as the primary breast cancer or, rarely, before the primary breast cancer has been diagnosed.
Metastatic breast cancer cells frequently differ from the preceding primary breast cancer in properties such as receptor status. The cells have often developed resistance to several lines of previous treatment and have acquired special properties that permit them to metastasize to distant sites. Metastatic breast cancer can be treated, sometimes for many years, but it cannot be cured. Distant metastases are the cause of about 90% of deaths due to breast cancer.
Breast cancer can metastasize anywhere in body but primarily metastasizes to the bone, lungs, regional lymph nodes, liver and brain, with the most common site being the bone. Treatment of metastatic breast cancer depends on location of the metastatic tumours and includes surgery, radiation, chemotherapy, biological, and hormonal therapy.
Typical environmental barriers in a metastatic event include physical (a basement membrane), chemical (reactive oxygen species or ROS, hypoxia and low pH) and biological (immune surveillance, inhibitory cytokines and regulatory extra-cellular matrix (ECM) peptides) components. Organ-specific anatomic considerations also influence metastasis; these include blood-flow patterns from the primary tumor and the homing ability of cancer cells to certain tissues. The targeting by cancer cells of specific organs is probably regulated by chemo-attractant factors and adhesion molecules produced by the target organ, along with cell-surface receptors expressed by the tumor cells.