Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Epidemiological data is elusive owing to the wide variety of clinical presentation. In the U.S., incidence is estimated to be at 5–10 cases per 100,000 per year. Minor compression of the inferior vena cava during pregnancy is a relatively common occurrence. It is seen most prevalently when women lie on their back or right side. 90% of women lying in the supine position during pregnancy experience inferior vena cava syndrome; however, not all of the women display symptoms.
Penile Revascularization is a specialized vascular-surgical treatment option for Erectile Dysfunction. The 2009 International Consultation on Sexual Dysfunctions recommended that revascularization be limited to nonsmoker, nondiabetic men younger than 55 years of age with isolated stenosis of the internal pudendal artery with absence of venous leak.
Patients with persistent erectile dysfunction after revascularization may benefit from repeat penile duplex ultrasound and pelvic angiography to evalauate the status of the bypass graft and to exclude the presence of a PASS as the cause. The prevalence of an aberrant obturator artery arising from the inferior epigastric artery is approximately 10.5%. If an aberrant obturator artery is visualized arising from the inferior epigastric artery prior to surgical penile revascularization, consideration should be given toward using an alternative source artery or to embolization to avoid the creation of a Penile Artery Shunt Syndrome encountered in this described case.
Percutaneous Coil Embolization of the aberrant obturator artery was performed. Arterial flow rapidly improved through the left dorsal penile artery, and brisk opacification was seen through to the glans penis. Post-procedure, the patient experienced an immediate improvement in erectile function.
Preexisting diabetes mellitus of a pregnant mother is a risk factor that has been described for the fetus having TGV.
Inferior vena cava syndrome (IVCS) is a result of obstruction of the inferior vena cava. It can be caused by invasion or compression by a pathological process or by thrombosis in the vein itself. It can also occur during pregnancy.Pregnancy can lead to problems with blood return due to high venous pressure in the lower limbs, failure of blood return to the heart, decreased cardiac output due to obstructions in inferior vena cava, sudden rise in venous pressure which can lead to placental separation, and a decrease in renal function. All of these issues can arise from lying in the supine position during late pregnancy which can cause compression of the inferior vena cava. Symptoms of late pregnancy inferior vena cava syndrome consist of intense pain in the right hand side, muscle twitching, drop of blood pressure, and fluid retention.
Vein of Galen malformations are devastating complications. Studies have shown that 77% of untreated cases result in mortality. Even after surgical treatment, the mortality rate remains as high as 39.4%. Most cases occur during infancy when the mortality rates are at their highest. Vein of Galen malformations are a relatively unknown affliction, attributed to the rareness of the malformations. Therefore, when a child is diagnosed with a faulty Great Cerebral Vein of Galen, most parents know little to nothing about what they are dealing with. To counteract this, support sites have been created which offer information, advice, and a community of support to the afflicted (, ).
Congenital stenosis of vena cava is a congenital anomaly in which the superior vena cava or inferior vena cava has an aberrant interruption or coarctation.
In some cases, it can be asymptomatic, and in other cases it can lead to fluid accumulation and cardiopulmonary collapse.
Management of the underlying defect is proportional to the severity of the clinical presentation. Leg swelling and pain is best evaluated by vascular specialists (vascular surgeons, interventional cardiologists, interventional radiologists) who both diagnose and treat arterial and venous diseases to ensure that the cause of the extremity pain is evaluated. The diagnosis needs to be confirmed with some sort of imaging that may include magnetic resonance venography, venogram and usually confirmed with intravascular ultrasound because the flattened vein may not be noticed on conventional venography. In order to prevent prolonged swelling or pain from the consequences of the backed up blood from the compressed iliac vein, flow needs to be improved out of the leg. Uncomplicated cases may be managed with compression stockings.
Severe May-Thurner syndrome may require thrombolysis if there is a recent onset of thrombosis, followed by angioplasty and stenting of the iliac vein after confirming the diagnosis with a venogram or an intravascular ultrasound. A stent may be used to support the area from further compression following angioplasty. As the name implies, there classically is not a thrombotic component in these cases, but thrombosis may occur at any time.
If the patient has extensive thrombosis, it may be appropriate to consider pharmacologic and/or mechanical (also known as pharmacomechanical) thrombectomy. This is currently being studied to determine whether this will decrease the incidence of post-thrombotic syndrome.
The risk of VTE is increased in pregnancy by about five times because of a more hypercoagulable state, a likely adaptation against fatal postpartum hemorrhage. Additionally, pregnant women with genetic risk factors are subject to a roughly three to 30 times increased risk for VTE. Preventative treatments for pregnancy-related VTE in hypercoagulable women were suggested by the ACCP. Homozygous carriers of factor V Leiden or prothrombin G20210A with a family history of VTE were suggested for antepartum LMWH and either LMWH or a vitamin K antagonist (VKA) for the six weeks following childbirth. Those with another thrombophilia and a family history but no previous VTE were suggested for watchful waiting during pregnancy and LMWH or—for those without protein C or S deficiency—a VKA. Homozygous carriers of factor V Leiden or prothrombin G20210A with no personal or family history of VTE were suggested for watchful waiting during pregnancy and LMWH or a VKA for six weeks after childbirth. Those with another thrombophilia but no family or personal history of VTE were suggested for watchful waiting only. Warfarin, a common VKA, can cause harm to the fetus and is not used for VTE prevention during pregnancy.
Surgical correction should be considered in the presence of significant left to right shunting (Qp:Qs ≥ 2:1) and pulmonary hypertension. This involves creation of an inter-atrial baffle to redirect the pulmonary venous return into the left atrium. Alternatively, the anomalous vein can be re-implanted directly into the left atrium.
Scimitar syndrome, or congenital pulmonary venolobar syndrome, is a rare congenital heart defect characterized by anomalous venous return from the right lung (to the systemic venous drainage, rather than directly to the left atrium). This anomalous pulmonary venous return can be either partial (PAPVR) or total (TAPVR). The syndrome associated with PAPVR is more commonly known as "Scimitar syndrome" after the curvilinear pattern created on a chest radiograph by the pulmonary veins that drain to the inferior vena cava. This radiographic density often has the shape of a scimitar, a type of curved sword. The syndrome was first described by Catherine Neill in 1960.
The overall absolute risk of venous thrombosis per 100,000 woman years in current use of combined oral contraceptives is approximately 60, compared to 30 in non-users. The risk of thromboembolism varies with different types of birth control pills; Compared with combined oral contraceptives containing levonorgestrel (LNG), and with the same dose of estrogen and duration of use, the rate ratio of deep venous thrombosis for combined oral contraceptives with norethisterone is 0.98, with norgestimate 1.19, with desogestrel (DSG) 1.82, with gestodene 1.86, with drospirenone (DRSP) 1.64, and with cyproterone acetate 1.88. Venous thromboembolism occurs in 100–200 per 100,000 pregnant women every year.
Regarding family history, age has substantial effect modification. For individuals with two or more affected siblings, the highest incidence rates is found among those ≥70 years of age (390 per 100,000 in male and 370 per 100,000 in female individuals), whereas the highest incidence ratios compared to those without affected siblings occurred at much younger ages (ratio of 4.3 among male individuals 20 to 29 years of age and 5.5 among female individuals 10 to 19 years of age).
Assuming a normal circulation, an embolus formed in a systemic vein will always impact in the lungs, after passing through the right side of the heart. This will form a pulmonary embolism that will result in a blockage of the main artery of the lung and can be a complication of deep-vein thrombosis. The most common sites of origin of pulmonary emboli are the "femoral" veins. The deep veins of the calf are the most common sites of actual thrombi.
DVA can be diagnosed through the Cerebral venous sinus thrombosis with collateral drainage. DVA can also be found diagnosed with Sturge–Weber syndrome and can be found through leptomeningeal angiomatosis. Demyelinating disease has also been found to enlarge Medulla veins.
Pulmonary vein stenosis is a rare cardiovascular disorder. It is recognized as being the stenosis of one or more of the four pulmonary veins that return blood from the lungs to the left atrium of the heart. In congenital cases, it is associated with poor prognosis and high mortality rate. In some people, pulmonary vein stenosis occurs after pulmonary vein ablation for the treatment of atrial fibrillation. Some recent research has indicated that it may be genetically linked in congenital cases.
It is known that diabetes causes changes to factors associated with coagulation and clotting, however not much is known of the risk of thromboembolism, or clots, in diabetic patients. There are some studies that show that diabetes increases the risk of thromboembolism; other studies show that diabetes does not increase the risk of thromboembolism. A study conducted in the Umea University Hospital, in Sweden, observed patients that were hospitalized due to an thromboembolism from 1997 to 1999. The researchers had access to patient information including age, sex, vein thromboembolism diagnosis, diagnostic methods, diabetes type and medical history. This study concluded that there is, in fact, an increased risk of thromboembolism development in diabetic patients, possibly due to factors associated with diabetes or diabetes itself. Diabetic patients are twice as likely to develop a thromboembolism than are non-diabetic patient. The exact mechanism of how diabetes increases the risk of clot formation remains unclear and could possibly be a future direction for study.
From previous studies, it is known that long distance air travel is associated with high risk of venous thrombosis. Long periods of inactivity in a limited amount of space may be a reason for the increased risk of blood clot formation. In addition, bent knees compresses the vein behind the knee (the popliteal vein) and the low humidity, low oxygen, high cabin pressure and consumption of alcohol concentrate the blood. A recent study, published in the British Journal of Haematology in 2014, determined which groups of people, are most at risk for developing a clot during or after a long flight. The study focused on 8755 frequent flying employees from international companies and organizations. It found that travelers who have recently undergone a surgical procedure or who have a malignant disease such as cancer or who are pregnant are most at risk. Preventative measures before flying may be taken in these at-risk groups as a solution.
Patients who have undergone kidney transplant have a high risk of developing RVT (about 0.4% to 6%). RVT is known to account for a large proportion of transplanted kidney failures due to technical problems (damage to the renal vein), clotting disorders, diabetes, consumption of ciclosporin or an unknown problem. Patients who have undergone a kidney transplant are commonly prescribed ciclosporin, an immunosuppressant drug which is known to reduce renal blood flow, increase platelet aggregation in the blood and cause damage to the endothelial tissue of the veins. In a clinical study conducted by the Nuffield Department of Surgery at the Oxford Transplant Centre, UK, transplant patients were given low doses of aspirin, which has a some anti-platelet activity. There is risk of bleeding in transplant patients when using anticoagulants like warfarin and herapin. Low dosage of aspirin was used as an alternative. The study concluded that a routine low-dose of aspirin in kidney transplant patients who are also taking ciclosporin significantly reduces the risk of RVT development.
Thrombosis prevention is initiated with assessing the risk for its development. Some people have a higher risk of developing thrombosis and its possible development into thromboembolism. Some of these risk factors are related to inflammation. "Virchow's triad" has been suggested to describe the three factors necessary for the formation of thrombosis: stasis of blood, vessel wall injury, and altered blood coagulation. Some risk factors predispose for venous thrombosis while others increase the risk of arterial thrombosis.
May-Thurner syndrome (MTS) is thought to represent between two and five percent of lower-extremity venous disorders. May-Thurner syndrome is often unrecognized; however, current estimates are that this condition is three times more common in women than in men. The classic syndrome typically presents in the second to fourth decades of life. In the 21st century in a broader disease profile, the syndrome acts as a permissive lesion and becomes symptomatic when something else happens such as, following trauma, a change in functional status such as swelling following orthopaedic joint replacement.
It is important to consider May-Thurner syndrome in patients who have no other obvious reason for hypercoagulability and who present with left lower extremity thrombosis. To rule out other causes for hypercoagulation, it may be appropriate to check the antithrombin, protein C, protein S, factor V Leiden, and prothrombin G20210A.
Venography will demonstrate the classical syndrome when causing deep venous thrombosis.
May-Thurner syndrome in the broader disease profile known as nonthrombotic iliac vein lesions (NIVLs) exists in the symptomatic ambulatory patient and these lesions are usually not seen by venography. Morphologically, intravascular ultrasound (IVUS) has emerged as the best current tool in the broader sense. Functional testing such as duplex ultrasound, venous and interstitial pressure measurement and plethysmography may sometimes be beneficial. Compression of the left common iliac vein may be seen on pelvic CT.
Arterial embolism can cause occlusion in any part of the body. It is a major cause of infarction, tissue death due to the blockage of blood supply.
An embolus lodging in the brain from either the heart or a carotid artery will most likely be the cause of a stroke due to ischemia.
An arterial embolus might originate in the heart (from a thrombus in the left atrium, following atrial fibrillation or be a septic embolus resulting from endocarditis). Emboli of cardiac origin are frequently encountered in clinical practice. Thrombus formation within the atrium occurs mainly in patients with mitral valve disease, and especially in those with mitral valve stenosis (narrowing), with atrial fibrillation (AF). In the absence of AF, pure mitral regurgitation has a low incidence of thromboembolism.
The risk of emboli forming in AF depends on other risk factors such as age, hypertension, diabetes, recent heart failure, or previous stroke.
Thrombus formation can also take place within the ventricles, and it occurs in approximately 30% of anterior-wall myocardial infarctions, compared with only 5% of inferior ones. Some other risk factors are poor ejection fraction (<35%), size of infarct, and the presence of AF. In the first three months after infarction, left-ventricle aneurysms have a 10% risk of emboli forming.
Patients with prosthetic valves also carry a significant increase in risk of thromboembolism. Risk varies, based on the valve type (bioprosthetic or mechanical); the position (mitral or aortic); and the presence of other factors such as AF, left-ventricular dysfunction, and previous emboli.
Emboli often have more serious consequences when they occur in the so-called "end circulation": areas of the body that have no redundant blood supply, such as the brain and heart.
The complications that are usually associated with vein of Galen malformations are usually intracranial hemorrhages. Over half the patients with VGAM have a malformation that cannot be corrected. Patients frequently die in the neonatal period or in early infancy.
Caput medusae, also known as palm tree sign, is the appearance of distended and engorged superficial epigastric veins, which are seen radiating from the umbilicus across the abdomen. The name "caput medusae" (Latin for "head of Medusa") originates from the apparent similarity to Medusa's head, which had venomous snakes in place of hair. It is also a symptom of portal hypertension. It is caused by dilation of the paraumbilical veins, which carries oxygenated blood from mother to fetus "in utero" and normally closes within one week of birth, becoming re-canalised due to portal hypertension caused by liver failure.
Evidence supports the use of heparin in people following surgery who have a high risk of thrombosis to reduce the risk of DVTs; however, the effect on PEs or overall mortality is not known. In hospitalized non-surgical patients, mortality decreased but not statistically significant. It does not appear however to decrease the rate of symptomatic DVTs. Using both heparin and compression stockings appears better than either one alone in reducing the rate of DVT.
In hospitalized people who have had a stroke and not had surgery, mechanical measures (compression stockings) resulted in skin damage and no clinical improvement. Data on the effectiveness of compression stockings among hospitalized non-surgical patients without stroke is scarce.
The American College of Physicians (ACP) gave three strong recommendations with moderate quality evidence on VTE prevention in non-surgical patients: that hospitalized patients be assessed for their risk of thromboembolism and bleeding before prophylaxis (prevention); that heparin or a related drug is used if potential benefits are thought to outweigh potential harms; and that graduated compression stockings not be used. As an ACP policy implication, the guideline stated a lack of support for any performance measures that incentivize physicians to apply universal prophylaxis without regard to the risks. Goldhaber recommends that people should be assessed at their hospital discharge for persistent high-risk of venous thrombosis, and that people who adopt a heart-healthy lifestyle might lower their risk of venous thrombosis.
In those with cancer who are still walking about yet receiving chemotherapy, LMWH decreases the risk of VTE. Due to potential concerns of bleeding its routine use is not recommended. For people who are having surgery for cancer, it is recommended that they receive anticoagulation therapy (preferably LMWH) in order to prevent a VTE. LMWH is recommended for at least 7–10 days following cancer surgery, and for one month following surgery for people who have a high risk of VTEs.
In adults who have had their lower leg casted or placed in a brace for more than a week, LMWH decreased the risk of VTEs. LMWH is recommended for adults not in hospital with an above-knee cast and a below-knee cast, and is safe for this indication.
Following the completion of warfarin in those with prior VTE, long term aspirin is beneficial.
For newborns with transposition, prostaglandins can be given to keep the ductus arteriosus open which allows mixing of the otherwise isolated pulmonary and systemic circuits. Thus oxygenated blood that recirculates back to the lungs can mix with blood that circulates throughout the body. The arterial switch operation is the definitive treatment for dextro- transposition. Rarely the arterial switch is not feasible due to particular coronary artery anatomy and an atrial switch operation is preferred.
Determine the direction of flow in the veins below the umbilicus. After pushing down on the prominent vein, blood will:
- flow toward the legs -> caput medusae
- flow toward the head-> inferior vena cava obstruction.
Treatment depends on the severity and symptoms. Treatments include:
- Endovascular stenting.
- Renal vein re-implantation.
- Gonadal vein embolization.