Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
In the United States and other developed countries, the incidence of mastoiditis is quite low, around 0.004%, although it is higher in developing countries. The condition most commonly affects children aged from two to thirteen months, when ear infections most commonly occur. Males and females are equally affected.
With prompt treatment, it is possible to cure mastoiditis. Seeking medical care early is important. However, it is difficult for antibiotics to penetrate to the interior of the mastoid process and so it may not be easy to cure the infection; it also may recur. Mastoiditis has many possible complications, all connected to the infection spreading to surrounding structures. Hearing loss is likely, or inflammation of the labyrinth of the inner ear (labyrinthitis) may occur, producing vertigo and an ear ringing may develop along with the hearing loss, making it more difficult to communicate. The infection may also spread to the facial nerve (cranial nerve VII), causing facial-nerve palsy, producing weakness or paralysis of some muscles of facial expression, on the same side of the face. Other complications include Bezold's abscess, an abscess (a collection of pus surrounded by inflamed tissue) behind the sternocleidomastoid muscle in the neck, or a subperiosteal abscess, between the periosteum and mastoid bone (resulting in the typical appearance of a protruding ear). Serious complications result if the infection spreads to the brain. These include meningitis (inflammation of the protective membranes surrounding the brain), epidural abscess (abscess between the skull and outer membrane of the brain), dural venous thrombophlebitis (inflammation of the venous structures of the brain), or brain abscess.
Otitis is a general term for inflammation or infection of the ear, in both humans and other animals.
It is subdivided into the following:
- "Otitis externa", external otitis, or "swimmer's ear" involves the outer ear and ear canal. In external otitis, the ear hurts when touched or pulled.
- "Otitis media" or middle ear infection involves the middle ear. In otitis media, the ear is infected or clogged with fluid behind the ear drum, in the normally air-filled middle-ear space. This very common childhood infection sometimes requires a surgical procedure called "myringotomy" and tube insertion.
- "Otitis interna" or labyrinthitis involves the inner ear. The inner ear includes sensory organs for balance and hearing. When the inner ear is inflamed, "vertigo" is a common symptom.
Some cases of pharyngitis are caused by fungal infection such as Candida albicans causing oral thrush.
Pharyngitis may also be caused by mechanical, chemical or thermal irritation, for example cold air or acid reflux. Some medications may produce pharyngitis such as pramipexole and antipsychotics.
In most cases, the condition tends to be self-limiting. In 95% or greater, vestibular neuritis is a one-time experience with most people fully recovering.
Recovery from acute labyrinthine inflammation generally takes from one to six weeks, but it is not uncommon for residual symptoms (dysequilibrium and/or dizziness) to last for a couple of months.
Recovery from a temporary damaged inner ear typically follows two phases:
1. An acute period, which may include severe vertigo and vomiting
2. approximately two weeks of sub-acute symptoms and rapid recovery
Some people will report having an upper respiratory infection (common cold) or flu prior to the onset of the symptoms of vestibular neuronitis; others will have no viral symptoms prior to the vertigo attack.
Some cases of vestibular neuronitis are thought to be caused by an infection of the vestibular ganglion by the herpes simplex type 1 virus. However, the cause of this condition is not fully understood, and in fact many different viruses may be capable of infecting the vestibular nerve.
Acute localized ischemia of these structures also may be an important cause, especially in children, vestibular neuritis may be preceded by symptoms of a common cold. However, the causative mechanism remains uncertain.
This can also be brought on by pressure changes such as those experienced while flying or scuba diving.
A minority of cases of infectious mononucleosis is caused by human cytomegalovirus (CMV), another type of herpes virus. This virus is found in body fluids including saliva, urine, blood, and tears. A person becomes infected with this virus by direct contact with infected body fluids. Cytomegalovirus is most commonly transmitted through kissing and sexual intercourse. It can also be transferred from an infected mother to her unborn child. This virus is often "silent" because the signs and symptoms cannot be felt by the person infected. However, it can cause life-threatening illness in infants, HIV patients, transplant recipients, and those with weak immune systems. For those with weak immune systems, cytomegalovirus can cause more serious illnesses such as pneumonia and inflammations of the retina, esophagus, liver, large intestine, and brain. Approximately 90% of the human population has been infected with cytomegalovirus by the time they reach adulthood, but most are unaware of the infection. Once a person becomes infected with cytomegalovirus, the virus stays in his/her body fluids throughout his or her lifetime.
About 90% of cases of infectious mononucleosis are caused by the Epstein–Barr virus, a member of the Herpesviridae family of DNA viruses. It is one of the most commonly found viruses throughout the world. Contrary to common belief, the Epstein–Barr virus is not highly contagious. It can only be contracted through direct contact with an infected person’s saliva, such as through kissing or sharing toothbrushes, cups, etc. About 95% of the population has been exposed to this virus by the age of 40, but only 15–20% of teenagers and about 40% of exposed adults actually become infected.
Posthitis can have infectious causes such as bacteria or fungi, or non-infectious causes such as contact dermatitis or psoriasis. The inflammation may be caused by irritants in the environment. Common causative organisms include candida, chlamydia, and gonorrhea. The cause must be properly diagnosed before a treatment can be prescribed. A common risk factor is diabetes.
Posthitis can lead to phimosis, the tightening of the foreskin which makes it difficult to retract over the glans. Posthitis can also lead to superficial ulcerations and diseases of the inguinal lymph nodes.
Hygiene, in particular the regular cleaning of the glans, is generally considered sufficient to prevent infection and inflammation of the foreskin. Full retraction of the foreskin may not be possible in boys younger than about ten years and some may not be able to fully retract their foreskin for cleaning until their late teens.
Vulvovaginitis in children may be "nonspecific", or caused by irritation with no known infectious cause, or infectious, caused by a pathogenic organism. Nonspecific vulvovaginitis may be triggered by fecal contamination, sexual abuse, chronic diseases, foreign bodies, nonestrogenized epithelium, chemical irritants, eczema, seborrhea, or immunodeficiency. It is treated with topical steroids; antibiotics may be given in cases where itching has resulted in a secondary infection.
Infectious vulvovaginitis can be caused by group A beta-hemolytic "Streptococcus" (7-20% of cases), "Haemophilus influenzae, Streptococcus pneumoniae, Staphylococcus aureus, Shigella, Yersinia", or common STI organisms ("Neisseria gonorrhoeae, Chlamydia trachomatis, Trichomonas vaginalis", herpes simplex virus, and human papillomavirus)"." Symptoms and treatment of infectious vulvovaginitis vary depending on the organism causing it. "Shigella" infections of the reproductive tract usually coexist with infectious of the gastrointestinal tract and cause mucous, purulent discharge. They are treated with trimethoprim-sulfamethoxazole. "Streptococcus" infections cause similar symptoms to nonspecific vulvovaginitis and are treated with amoxicillin. STI-associated vulvovaginitis may be caused by sexual abuse or vertical transmission, and are treated and diagnosed like adult infections.
The disease incidence varies widely depending on the geographical location. The most extensive epidemiological survey on this subject has been carried out by Dharmasena et al. who analysed the number of neonates who developed neonatal conjunctivitis in England from 2000 to 2011. In addition to the incidence of this sight threatening infection they also investigated the time trends of the disease. According to them the incidence of Neonatal conjunctivitis (Ophthalmia Neonatorum) in England was 257 (95% confidence interval: 245 to 269) per 100,000 in 2011.
A stroke (either ischemic or hemorrhagic) involving the posterior fossa is a cause of central vertigo. Risk factors for a stroke as a cause of vertigo include increasing age and known vascular risk factors. Presentation may more often involve headache or neck pain, additionally, those who have had multiple episodes of dizziness in the months leading up to presentation are suggestive of stroke with prodromal TIAs. The HINTS exam as well as imaging studies of the brain (CT, CT angiogram, and/or MRI) are helpful in diagnosis of posterior fossa stroke.
Vertigo is recorded as a symptom of decompression sickness in 5.3% of cases by the US Navy as reported by Powell, 2008 It including isobaric decompression sickness.
Decompression sickness can also be caused at a constant ambient pressure when switching between gas mixtures containing different proportions of inert gas. This is known as isobaric counterdiffusion, and presents a problem for very deep dives. For example, after using a very helium-rich trimix at the deepest part of the dive, a diver will switch to mixtures containing progressively less helium and more oxygen and nitrogen during the ascent. Nitrogen diffuses into tissues 2.65 times slower than helium, but is about 4.5 times more soluble. Switching between gas mixtures that have very different fractions of nitrogen and helium can result in "fast" tissues (those tissues that have a good blood supply) actually increasing their total inert gas loading. This is often found to provoke inner ear decompression sickness, as the ear seems particularly sensitive to this effect.
Chemical irritants such as silver nitrate can cause chemical conjunctivitis, usually lasting 2–4 days. Thus, prophylaxis with a 1% silver nitrate solution is no longer in common use. In most countries neomycin and chloramphenicol eye drops are used instead. However, it is possible for newborns to suffer from neonatal conjunctivitis due to reactions with chemicals in these common eye drops. Additionally, a blocked tear duct may be another non-infectious cause of neonatal conjunctivitis.
Surgical treatments, such as a semi-circular canal occlusion, do exist for BPPV, but carry the same risk as any neurosurgical procedure. Surgery is reserved as a last resort option for severe and persistent cases which fail vestibular rehabilitation (including particle repositioning and habituation therapy).
Within the labyrinth of the inner ear lie collections of calcium crystals known as otoconia or otoliths. In patients with BPPV, the otoconia are dislodged from their usual position within the utricle, and migrate over time into one of the semicircular canals (the posterior canal is most commonly affected due to its anatomical position). When the head is reoriented relative to gravity, the gravity-dependent movement of the heavier otoconial debris (colloquially "ear rocks") within the affected semicircular canal causes abnormal (pathological) endolymph fluid displacement and a resultant sensation of vertigo. This more common condition is known as canalithiasis.
In rare cases, the crystals themselves can adhere to a semicircular canal cupula, rendering it heavier than the surrounding endolymph. Upon reorientation of the head relative to gravity, the cupula is weighted down by the dense particles, thereby inducing an immediate and sustained excitation of semicircular canal afferent nerves. This condition is termed cupulolithiasis.
There is evidence in the dental literature that malleting of an osteotome during closed sinus floor elevation, otherwise known as "osteotome sinus elevation" or "lift", transmits percussive and vibratory forces capable of detaching otoliths from their normal location and thereby leading to the symptoms of BPPV.
It can be triggered by any action which stimulates the posterior semi-circular canal, including:
- Looking up or down
- Preceding head injury
- Sudden head movement
- Rolling over in bed
- Tilting the head
BPPV may be made worse by any number of modifiers which may vary between individuals:
- Changes in barometric pressure — patients may feel increased symptoms up to two days before rain or snow
- Lack of sleep (required amounts of sleep may vary widely)
- Stress
An episode of BPPV may be triggered by dehydration, such as that caused by diarrhea. For this reason, it commonly occurs in post-operative patients who have diarrhea induced by post-operative antibiotics.
BPPV is one of the most common vestibular disorders in patients presenting with dizziness; migraine is implicated in idiopathic cases. Proposed mechanisms linking the two are genetic factors and vascular damage to the labyrinth.
Although BPPV can occur at any age, it is most often seen in people over the age of 60. Besides aging, there are no major risk factors known for developing BPPV, although previous episodes of trauma to the head, or inner ear infections known as labyrinthitis, may predispose individuals to future development of BPPV.
Tenosynovitis most commonly results from the introduction of bacteria into a sheath through a puncture or laceration wound, though bacteria can also be spread from adjacent tissue or via hematogenous spread. The clinical presentation is therefore as acute infection following trauma. The infection can be mono- or polymicrobial and can vary depending on the nature of the trauma. The most common pathogenic agent is staphylococcus aureus introduced from the skin. Other bacteria linked to infectious tenosynovitis include Pasteurella multocida (associated with animal bites), Eikenella spp. (associated with IV drug use), and Mycobacterium marinum (associated with wounds exposed to fresh or salt water). Additionally, sexually active patients are at risk for hematogenous spread due to Neisseria gonorrhea (see infectious arthritis).
Noninfectious tenosynovitis can arise from overuse or secondary to other systemic inflammatory conditions such as [rheumatoid arthritis] or [reactive arthritis]. If left untreated, the tendons may undergo stenosis, causing conditions such as de Quervain’s and trigger finger.
Symptoms of infectious mononucleosis are fever, sore throat, and swollen lymph glands. Sometimes, a swollen spleen or liver involvement may develop. Heart problems or involvement of the central nervous system occurs only rarely, and infectious mononucleosis is almost never fatal. There are no known associations between active EBV infection and problems during pregnancy, such as miscarriages or birth defects. Although the symptoms of infectious mononucleosis usually resolve in 1 or 2 months, EBV remains dormant or latent in a few cells in the throat and blood for the rest of the person's life. Periodically, the virus can reactivate and is commonly found in the saliva of infected persons. Reactivated and post-latent virus may pass the placental barrier in (also seropositive) pregnant women via macrophages and therefore can infect the fetus. Also re-infection of prior seropositive individuals may occur. In contrast, reactivation in adults usually occurs without symptoms of illness.
EBV also establishes a lifelong dormant infection in some cells of the body's immune system. A late event in a very few carriers of this virus is the emergence of Burkitt's lymphoma and nasopharyngeal carcinoma, two rare cancers. EBV appears to play an important role in these malignancies, but is probably not the sole cause of disease.
Most individuals exposed to people with infectious mononucleosis have previously been infected with EBV and are not at risk for infectious mononucleosis. In addition, transmission of EBV requires intimate contact with the saliva (found in the mouth) of an infected person. Transmission of this virus through the air or blood does not normally occur. The incubation period, or the time from infection to appearance of symptoms, ranges from 4 to 6 weeks. Persons with infectious mononucleosis may be able to spread the infection to others for a period of weeks. However, no special precautions or isolation procedures are recommended, since the virus is also found frequently in the saliva of healthy people. In fact, many healthy people can carry and spread the virus intermittently for life. These people are usually the primary reservoir for person-to-person transmission. For this reason, transmission of the virus is almost impossible to prevent.
The clinical diagnosis of infectious mononucleosis is suggested on the basis of the symptoms of fever, sore throat, swollen lymph glands, and the age of the patient. Usually, laboratory tests are needed for confirmation. Serologic results for persons with infectious mononucleosis include an elevated white blood cell count, an increased percentage of certain atypical white blood cells, and a positive reaction to a "mono spot" test.
Other causes or associations of disease are: a compromised immune system, environmental toxins, radiation exposure, diet and lifestyle choices, stress, and genetics. Diseases may also be multifactorial, requiring multiple factors to induce disease. For example: in a murine model, Crohn's disease can be precipitated by a norovirus, but only when both a specific gene variant is present and a certain toxin has damaged the gut.
A list of the more common and well-known diseases associated with infectious pathogens is provided and is not intended to be a complete listing.
There is no specific treatment for infectious mononucleosis, other than treating the symptoms. In severe cases, steroids such as corticosteroids may be used to control the swelling of the throat and tonsils. Currently, there are no antiviral drugs or vaccines available.
It is important to note that symptoms related to infectious mononucleosis caused by EBV infection seldom last for more than 4 months. When such an illness lasts more than 6 months, it is frequently called chronic EBV infection. However, valid laboratory evidence for continued active EBV infection is seldom found in these patients. The illness should be investigated further to determine if it meets the criteria for chronic fatigue syndrome, or CFS. This process includes ruling out other causes of chronic illness or fatigue.
Tenosynovitis is the inflammation of the fluid-filled sheath (called the synovium) that surrounds a tendon, typically leading to joint pain, swelling, and stiffness. Tenosynovitis can be either infectious or noninfectious. Common clinical manifestations of noninfectious tenosynovitis include de Quervain tendinopathy and stenosing tenosynovitis (more commonly known as trigger finger)
Bacterial and viral infections can both cause the same kinds of symptoms. It can be difficult to distinguish which is the cause of a specific infection. It's important to distinguish, because viral infections cannot be cured by antibiotics.