Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Ultraviolet (UV) radiation is implicated in cattle with no pigmentation around the eyelids and cattle with prominently placed eyes. Exudate from the sun-burnt skin around the eyes can contain bacteria and attracts flies. UV light also directly damages the corneal epithelium, leading to a breakdown in host innate immunity.
Dust, dried-up plants, tall vegetation, and oversized or incorrectly placed ear tags may cause mechanical damage to the eye and facilitate bacterial colonization.
The disease may be complicated by concurrent infection with viruses such as infectious bovine rhinotracheitis virus (bovine herpesvirus 1) or adenovirus, bacteria such as "Mycoplasma boviculi" or "Listeria monocytogenes", or infestation by "Thelazia", a nematode.
Vitamin A deficiency is also implicated.
IBK is most prevalent in summer and early autumn.
A recent Meat and Livestock Australia report "estimates that the disease costs Australian beef producers AU$23.5 million annually in lost production and treatment costs".
"Moraxella bovis" is a Gram-negative rod-shaped aerobe. This bacterium is an obligate intracellular parasite of the mucous membranes, and can usually be isolated from the respiratory tract, vagina, and conjunctiva of healthy animals. Transmission of IBK is through direct contact with mucous membranes and their secretions and indirect contact where flies act as a mechanical vector. Asymptomatic carrier animals can also be source of infection.
Stress often serves as the final precursor to BRD. The diseases that make up BRD can persist in a cattle herd for a long period of time before becoming symptomatic, but immune systems weakened by stress can stop controlling the disease. Major sources of stress come from the shipping process
and from the co-mingling of cattle.
Weather may be another possible factor. Cases are more common in the fall (although this is the traditional time to sell cattle), and while the relationship between weather and BRD is poorly understood, it is often suggested to avoid transporting cattle during extreme weather.
MAP is capable of causing Johne's-like symptoms in humans, though difficulty in testing for MAP infection presents a diagnostic hurdle.
Clinical similarities are seen between Johne's disease in ruminants and inflammatory bowel disease in humans, and because of this, some researchers contend the organism is a cause of Crohn's disease. However, epidemiologic studies have provided variable results; in certain studies, the organism (or an immune response directed against it) has been much more frequently found in patients with Crohn's disease than asymptomatic people.
In an endemic herd, only a minority of the animals develops clinical signs; most animals either eliminate the infection or become asymptomatic carriers. The mortality rate is about 1%, but up to 50% of the animals in the herd can be asymptomatically infected, resulting in losses in production. Once the symptoms appear, paratuberculosis is progressive and affected animals eventually die. The percentage of asymptomatic carriers that develop overt disease is unknown.
A list of the more common and well-known diseases associated with infectious pathogens is provided and is not intended to be a complete listing.
In birds, "Chlamydia psittaci" infection is referred to as avian chlamydiosis (AC). Infected birds shed the bacteria through feces and nasal discharges, which can remain infectious for several months. Many strains remain quiescent in birds until activated under stress. Birds are excellent, highly mobile vectors for the distribution of chlamydial infection because they feed on, and have access to, the detritus of infected animals of all sorts.
Other causes or associations of disease are: a compromised immune system, environmental toxins, radiation exposure, diet and lifestyle choices, stress, and genetics. Diseases may also be multifactorial, requiring multiple factors to induce disease. For example: in a murine model, Crohn's disease can be precipitated by a norovirus, but only when both a specific gene variant is present and a certain toxin has damaged the gut.
For infecting organisms to survive and repeat the infection cycle in other hosts, they (or their progeny) must leave an existing reservoir and cause infection elsewhere. Infection transmission can take place via many potential routes:
- Droplet contact, also known as the "respiratory route", and the resultant infection can be termed airborne disease. If an infected person coughs or sneezes on another person the microorganisms, suspended in warm, moist droplets, may enter the body through the nose, mouth or eye surfaces.
- Fecal-oral transmission, wherein foodstuffs or water become contaminated (by people not washing their hands before preparing food, or untreated sewage being released into a drinking water supply) and the people who eat and drink them become infected. Common fecal-oral transmitted pathogens include "Vibrio cholerae", "Giardia" species, rotaviruses, "Entameba histolytica", "Escherichia coli", and tape worms. Most of these pathogens cause gastroenteritis.
- Sexual transmission, with the resulting disease being called sexually transmitted disease
- Oral transmission, Diseases that are transmitted primarily by oral means may be caught through direct oral contact such as kissing, or by indirect contact such as by sharing a drinking glass or a cigarette.
- Transmission by direct contact, Some diseases that are transmissible by direct contact include athlete's foot, impetigo and warts
- Vehicle Transmission, transmission by an inanimate reservoir (food, water, soil).
- Vertical transmission, directly from the mother to an embryo, fetus or baby during pregnancy or childbirth. It can occur when the mother gets an infection as an intercurrent disease in pregnancy.
- Iatrogenic transmission, due to medical procedures such as injection or transplantation of infected material.
- Vector-borne transmission, transmitted by a vector, which is an organism that does not cause disease itself but that transmits infection by conveying pathogens from one host to another.
The relationship between "virulence versus transmissibility" is complex; if a disease is rapidly fatal, the host may die before the microbe can be passed along to another host.
In the absence of vaccination (often because calves are bought unvaccinated), antibiotics can help to stop the bacterial factors of the disease. The Virginia Cooperative Extension recommends Micotil, Nuflor, and Baytril 100 as newer antibiotics that do not need daily dosing, but also notes that Naxcel, Excenel, and Adspec are effective as well.
Disease can arise if the host's protective immune mechanisms are compromised and the organism inflicts damage on the host. Microorganisms can cause tissue damage by releasing a variety of toxins or destructive enzymes. For example, Clostridium tetani releases a toxin that paralyzes muscles, and staphylococcus releases toxins that produce shock and sepsis. Not all infectious agents cause disease in all hosts. For example, less than 5% of individuals infected with polio develop disease. On the other hand, some infectious agents are highly virulent. The prion causing mad cow disease and Creutzfeldt–Jakob disease invariably kills all animals and people that are infected.
Persistent infections occur because the body is unable to clear the organism after the initial infection. Persistent infections are characterized by the continual presence of the infectious organism, often as latent infection with occasional recurrent relapses of active infection. There are some viruses that can maintain a persistent infection by infecting different cells of the body. Some viruses once acquired never leave the body. A typical example is the herpes virus, which tends to hide in nerves and become reactivated when specific circumstances arise.
Persistent infections cause millions of deaths globally each year. Chronic infections by parasites account for a high morbidity and mortality in many underdeveloped countries.
FVR is transmitted through direct contact only. It replicates in the nasal and nasopharyngeal tissues and the tonsils. Viremia (the presence of the virus in the blood) is rare. The virus is shed in saliva and eye and nasal secretions, and can also be spread by fomites. FVR has a two- to five-day incubation period. The virus is shed for one to three weeks postinfection. Latently infected cats (carriers) will shed FHV-1 intermittently for life, with the virus persisting within the trigeminal ganglion. Stress and use of corticosteroids precipitate shedding. Most disinfectants, antiseptics and detergents are effective against the virus.
Psittacosis—also known as parrot fever, and ornithosis—is a zoonotic infectious disease caused by a bacterium called "Chlamydia psittaci" and contracted from infected parrots, such as macaws, cockatiels and budgerigars, and pigeons, sparrows, ducks, hens, gulls and many other species of bird. The incidence of infection in canaries and finches is believed to be lower than in psittacine birds.
In certain contexts, the word is used when the disease is carried by any species of bird belonging to the family Psittacidae, whereas "ornithosis" is used when other birds carry the disease.
There is a vaccine for FHV-1 available (ATCvet code: , plus various combination vaccines), but although it limits or weakens the severity of the disease and may reduce viral shedding, it does not prevent infection with FVR. Studies have shown a duration of immunity of this vaccine to be at least three years. The use of serology to demonstrate circulating antibodies to FHV-1 has been shown to have a positive predictive value for indicating protection from this disease.
Swine brucellosis is a zoonosis affecting pigs, caused by the bacterium "Brucella suis". The disease typically causes chronic inflammatory lesions in the reproductive organs of susceptible animals or orchitis, and may even affect joints and other organs. The most common symptom is abortion in pregnant susceptible sows at any stage of gestation. Other manifestations are temporary or permanent sterility, lameness, posterior paralysis, spondylitis, and abscess formation. It is transmitted mainly by ingestion of infected tissues or fluids, semen during breeding, and suckling infected animals.
Since brucellosis threatens the food supply and causes undulant fever, "Brucella suis" and other "Brucella" species ("B. melitensis, B. abortis, B. ovis, B. canis") are recognized as potential agricultural, civilian, and military bioterrorism agents.
"B. suis" is a Gram-negative, facultative, intracellular coccobacillus, capable of growing and reproducing inside of host cells, specifically phagocytic cells. They are also not spore-forming, capsulated, or motile. Flagellar genes, however, are present in the "B. suis" genome, but are thought to be cryptic remnants because some were truncated and others were missing crucial components of the flagellar apparatus. Interestingly, in mouse models, the flagellum is essential for a normal infectious cycle, where the inability to assemble a complete flagellum leads to severe attenuation of the bacteria.
"B. suis" is differentiated into five biovars (strains), where biovars 1-3 infect wild boar and domestic pigs, and biovars 1 and 3 may cause severe diseases in humans.
In contrast, biovar 2 found in wild boars in Europe shows mild or no clinical signs and cannot infect healthy humans, but does infect pigs and hares.
Bovine malignant catarrhal fever (BMCF) is a fatal lymphoproliferative disease caused by a group of ruminant gamma herpes viruses including Alcelaphine gammaherpesvirus 1 (AlHV-1) and Ovine gammaherpesvirus 2 (OvHV-2) These viruses cause unapparent infection in their reservoir hosts (sheep with OvHV-2 and wildebeest with AlHV-1), but are usually fatal in cattle and other ungulates such as deer, antelope, and buffalo.
BMCF is an important disease where reservoir and susceptible animals mix. There is a particular problem with Bali cattle in Indonesia, bison in the US and in pastoralist herds in Eastern and Southern Africa.
Disease outbreaks in cattle are usually sporadic although infection of up to 40% of a herd has been reported. The reasons for this are unknown. Some species appear to be particularly susceptible, for example Pére Davids deer, Bali cattle and bison, with many deer dying within 48 hours of the appearance of the first symptoms and bison within three days. In contrast, post infection cattle will usually survive a week or more.
Paravaccinia virus originates from livestock infected with bovine papular stomatitis. When a human makes physical contact with the livestock's muzzle, udders, or an infected area, the area of contact will become infected. Livestock may not show symptoms of bovine papular stomatitis and still be infected and contagious. Paravaccinia can enter the body though all pathways including: skin contact by mechanical means, through the respiratory tract, or orally. Oral or respiratory contraction may be more likely to cause systemic symptoms such as lesions across the whole body
A person who has not previously been infected with paravaccinia virus should avoid contact with infected livestock to prevent contraction of disease. There is no commercially available vaccination for cattle or humans against paravaccinia. However, following infection, immunization has been noted in humans, making re-infection difficult. Unlike other pox viruses, there is no record of contracting paravaccinia virus from another human. Further, cattle only show a short immunization after initial infection, providing opportunity to continue to infect more livestock and new human hosts.
The term "bovine malignant catarrhal fever" has been applied to three different patterns of disease:
- In Africa, wildebeests carry a lifelong infection of AlHV-1 but are not affected by the disease. The virus is passed from mother to offspring and shed mostly in the nasal secretions of wildebeest calves under one year old. Wildebeest associated MCF is transmitted from wildebeest to cattle normally following the wildebeest calving period. Cattle of all ages are susceptible to the disease, with a higher infection rate in adults, particularly in peripartuent females. Cattle are infected by contact with the secretions, but do not spread the disease to other cattle. Because no commercial treatment or vaccine is available for this disease, livestock management is the only method of control. This involves keeping cattle away from wildebeest during the critical calving period. This results in Massai pastoralists in Tanzania and Kenya being excluded from prime pasture grazing land during the wet season leading to a loss in productivity. In Eastern and Southern Africa MCF is classed as one of the five most important problems affecting pastoralists along with East coast fever, contagious bovine pleuropneumonia, foot and mouth disease and anthrax.Hartebeests and topi also may carry the disease. However, hartebeests and other antelopes are infected by a variant, Alcelaphine herpesvirus 2.
- Throughout the rest of the world, cattle and deer contract BMCF by close contact with sheep or goats during lambing. The natural host reservoir for Ovine herpesvirus 2 is the subfamily Caprinae (sheep and goats) whilst MCF affected animals are from the families Bovidae, Cervidae and suidae. Susceptibility to OHV-2 varies by species, with domestic cattle and zebus somewhat resistant, water buffalo and most deer somewhat susceptible, and bison, Bali cattle, and Pere David's deer very susceptible. OHV-2 viral DNA has been detected in the alimentary, respiratory and urino-genital tracts of sheep all of which could be possible transmission routes. Antibody from sheep and from cattle with BMCF is cross reactive with AlHV-1.
- AHV-1/OHV-2 can also cause problems in zoological collections, where inapparently infected hosts (wildebeest and sheep) and susceptible hosts are often kept in close proximity.
- Feedlot bison in North America not in contact with sheep have also been diagnosed with a form of BMCF. OHV-2 has been recently documented to infect herds of up to 5 km away from the nearest lambs, with the levels of infected animals proportional to the distance away from the closest herds of sheep.
The incubation period of BMCF is not known, however intranasal challenge with AHV-1 induced MCF in one hundred percent of challenged cattle between 2.5 and 6 weeks.
Shedding of the virus is greater from 6–9 month old lambs than from adults. After experimental infection of sheep, there is limited viral replication in nasal cavity in the first 24 hours after infection, followed by later viral replication in other tissues.
Conjunctivitis may also be caused by allergens such as pollen, perfumes, cosmetics, smoke, dust mites, Balsam of Peru, and eye drops.
Contact with farm animals can lead to disease in farmers or others that come into contact with infected animals. Glanders primarily affects those who work closely with horses and donkeys. Close contact with cattle can lead to cutaneous anthrax infection, whereas inhalation anthrax infection is more common for workers in slaughterhouses, tanneries and wool mills. Close contact with sheep who have recently given birth can lead to clamydiosis, or enzootic abortion, in pregnant women, as well as an increased risk of Q fever, toxoplasmosis, and listeriosis in pregnant or the otherwise immunocompromised. Echinococcosis is caused by a tapeworm which can be spread from infected sheep by food or water contaminated with feces or wool. Bird flu is common in chickens. While rare in humans, the main public health worry is that a strain of bird flu will recombine with a human flu virus and cause a pandemic like the 1918 Spanish flu. In 2017, free range chickens in the UK were temporarily ordered to remain inside due to the threat of bird flu. Cattle are an important reservoir of cryptosporidiosis and mainly affects the immunocompromised.
The most common causes of acute bacterial conjunctivitis are "Staphylococcus aureus", "Streptococcus pneumoniae", and "Haemophilus influenzae". Though very rare, hyperacute cases are usually caused by "Neisseria gonorrhoeae" or "N. meningitidis". Chronic cases of bacterial conjunctivitis are those lasting longer than 3 weeks, and are typically caused by "Staphylococcus aureus", "Moraxella lacunata", or gram-negative enteric flora.
Outbreaks of zoonoses have been traced to human interaction with and exposure to animals at fairs, petting zoos, and other settings. In 2005, the Centers for Disease Control and Prevention (CDC) issued an updated list of recommendations for preventing zoonosis transmission in public settings. The recommendations, developed in conjunction with the National Association of State Public Health Veterinarians, include educational responsibilities of venue operators, limiting public and animal contact, and animal care and management.
Paravaccinia is a member of the Parapoxvirus family. It has a cylindrical body about 140 X 310 nm in size, with convex ends covered in a criss-cross pattern of rope like structures. The virus is resistant to cold, dehydration, and temperatures up to 56 °C. Upon injecting a cell with its genome, the virus begins transcription in the cytoplasm using viral RNA polymerase. As the virus progresses through the cell, the host begins to replicate the viral genome between 140 minutes and 48 hours.
Several species of rickettsia bacteria cause anaplasmosis in ruminants:
- Cattle:
- "Anaplasma marginale" - found worldwide.
- "Anaplasma centrale" - found mainly in South America, Africa and the Middle East.
- Sheep and goats:
- "Anaplasma ovis" - found worldwide.