Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A viral disease (or viral infection) occurs when an organism's body is invaded by pathogenic viruses, and infectious virus particles (virions)
attach to and enter susceptible cells.
Fetal infection is of most consequence as this can result in the birth of a persistently infected neonate. The effects of fetal infection with BVDV are dependent upon the stage of gestation at which the dam suffers acute infection.
BVDV infection of the dam prior to conception, and during the first 18 days of gestation, results in delayed conception and an increased calving to conception interval. Once the embryo is attached, infection from days 29–41 can result in embryonic infection and resultant embryonic death.
Infection of the dam from approximately day 30 of gestation until day 120 can result in immunotolerance and the birth of calves persistently infected with the virus.
BVDV infection between 80 and 150 days of gestation may be teratogenic, with the type of birth defect dependent upon the stage of fetal development at infection. Abortion may occur at any time during gestation. Infection after approximately day 120 can result in the birth of a normal fetus which is BVD antigen-negative and BVD antibody-positive. This occurs because the fetal immune system has developed, by this stage of gestation, and has the ability to recognise and fight off the invading virus, producing anti-BVD antibodies.
The VHF viruses are spread in a variety of ways. Some may be transmitted to humans through a respiratory route. According to Soviet defector Ken Alibek, Soviet scientists concluded China may have tried to weaponise a VHF virus during the late 1980's but discontinued to do so after an outbreak . The virus is considered by military medical planners to have a potential for aerosol dissemination, weaponizaton, or likelihood for confusion with similar agents that might be weaponized.
BVDV infection has a wide manifestation of clinical signs including fertility issues, milk drop, pyrexia, diarrhoea and fetal infection. Occasionally, a severe acute form of BVD may occur. These outbreaks are characterized by thrombocytopenia with high morbidity and mortality. However, clinical signs are frequently mild and infection insidious, recognised only by BVDV’s immunosuppressive effects perpetuating other circulating infectious diseases (particularly scours and pneumonias).
An individual may only develop signs of an infection after a period of subclinical infection, a duration that is called the incubation period. This is the case, for example, for subclinical sexually transmitted diseases such as AIDS and genital warts. Individuals with such subclinical infections, and those that never develop overt illness, creates a reserve of individuals that can transmit an infectious agent to infect other individuals. Because such cases of infections do not come to clinical attention, health statistics can often fail to measure the true prevalence of an infection in a population, and this prevents the accurate modeling of its infectious transmission.
Five families of RNA viruses have been recognised as being able to cause hemorrhagic fevers.
- The family "Arenaviridae" include the viruses responsible for Lassa fever (Lassa virus), Lujo virus, Argentine (Junin virus), Bolivian (Machupo virus), Brazilian (Sabiá virus), Chapare hemorrhagic fever (Chapare virus) and Venezuelan (Guanarito virus) hemorrhagic fevers.
- The family "Bunyaviridae" include the members of the "Hantavirus" genus that cause hemorrhagic fever with renal syndrome (HFRS), the Crimean-Congo hemorrhagic fever (CCHF) virus from the "Nairovirus" genus, Garissa virus and Ilesha virus from the "Orthobunyavirus" and the Rift Valley fever (RVF) virus from the "Phlebovirus" genus.
- The family "Filoviridae" include Ebola virus and Marburg virus.
- The family "Flaviviridae" include dengue, yellow fever, and two viruses in the tick-borne encephalitis group that cause VHF: Omsk hemorrhagic fever virus and Kyasanur Forest disease virus.
- In September 2012 scientists writing in the journal PLOS Pathogens reported the isolation of a member of the "Rhabdoviridae" responsible for 2 fatal and 2 non-fatal cases of hemorrhagic fever in the Bas-Congo district of the Democratic Republic of Congo. The non-fatal cases occurred in healthcare workers involved in the treatment of the other two, suggesting the possibility of person-to-person transmission. This virus appears to be unrelated to previously known Rhabdoviruses.
The pathogen that caused the cocoliztli epidemics in Mexico of 1545 and 1576 is still unknown.
Fever and sickness behavior and other signs of infection are often taken to be due to them. However, they are evolved physiological and behavioral responses of the host to clear itself of the infection. Instead of incurring the costs of deploying these evolved responses to infections, the body opts to tolerate an infection as an alternative to seeking to control or remove the infecting pathogen.
Subclinical infections are important since they allow infections to spread from a reserve of carriers. They also can cause clinical problems unrelated to the direct issue of infection. For example, in the case of urinary tract infections in women, this infection may cause preterm delivery if the person becomes pregnant without proper treatment.
Congential rubella is still a risk with higher risk among immigrant women from countries without adequate vaccination programs.
Sixty percent of mothers of preterm infants are infected with cytomegalovirus (CMV). Infection is asymptomatic in most instances but 9% to 12% of postnatally infected low birth weight, preterm infants have severe, sepsis-like infection. CMV infection duration can be long and result in pneumonitis in association with fibrosis. CMV infection in infants has an unexpected effect on the white blood cells of the immune system causing them to prematurely age. This leads to a reduced immune response similar to that found in the elderly.
Thoroughly cleaning boats, trailers, nets and other equipment when traveling between different lakes and streams also
helps. The only EPA-approved disinfectant proven effective against VHS is Virkon AQUATIC (made by Dupont). Chlorine bleach kills the VHS virus, but in concentrations that are much too caustic for ordinary use. Disinfecting stations can be found at various inland lake boat launches in the Great Lakes region.
Although epidemiologic characteristics of the adenoviruses vary by type, all are transmitted by direct contact, fecal-oral transmission, and occasionally waterborne transmission. Some types are capable of establishing persistent asymptomatic infections in tonsils, adenoids, and intestines of infected hosts, and shedding can occur for months or years. Some adenoviruses (e.g., serotypes 1, 2, 5, and 6) have been shown to be endemic in parts of the world where they have been studied, and infection is usually acquired during childhood. Other types cause sporadic infection and occasional outbreaks; for example, epidemic keratoconjunctivitis is associated with adenovirus serotypes 8, 19, and 37. Epidemics of febrile disease with conjunctivitis are associated with waterborne transmission of some adenovirus types, often centering on inadequately chlorinated swimming pools and small lakes. ARD is most often associated with adenovirus types 4 and 7 in the United States. Enteric adenoviruses 40 and 41 cause gastroenteritis, usually in children. For some adenovirus serotypes, the clinical spectrum of disease associated with infection varies depending on the site of infection; for example, infection with adenovirus 7 acquired by inhalation is associated with severe lower respiratory tract disease, whereas oral transmission of the virus typically causes no or mild disease. Outbreaks of adenovirus-associated respiratory disease have been more common in the late winter, spring, and early summer; however, adenovirus infections can occur throughout the year.
"Ad14 (for adenovirus serotype 14), has caused at least 140 illnesses in New York, Oregon, Texas and Washington, according to a report from the Centers for Disease Control and Prevention. The illness made headlines in Texas in September 2007, when a so-called "boot camp flu" sickened hundreds at Lackland Air Force Base in San Antonio. A 19-year-old trainee died."
Several adenoviruses, including Ad5, Ad9, Ad31, Ad36, Ad37, and SMAM1, have at least some evidence of causation of obesity in animals, adipogenesis in cells, and/or association with human obesity. To date, the most thorough investigations have been conducted for adenovirus serotype 36 (Adv36).
Viral hemorrhagic septicemia (VHS) is a deadly infectious fish disease caused by viral hemorrhagic septicemia virus (VHSV). It afflicts fish of over 50 species of freshwater
and marine fish in several parts of the northern hemisphere.
VHS is caused by viral hemorrhagic septicemia virus (VHSV), different strains of which occur in different regions, and affect different species. There are no signs that the disease affects human health. VHS is also known as "Egtved disease," and VHSV as "Egtved virus."
Historically, VHS was associated mostly with freshwater salmonids in western Europe,
documented as a pathogenic disease among cultured salmonids since the 1950s. Today it is still a major concern for many fish farms in Europe and is therefore being watched closely by the European Community Reference Laboratory for Fish Diseases.
It was first discovered in the US in 1988 among salmon returning from the Pacific in Washington State. This North American genotype was identified as a distinct, more marine-stable strain than the European genotype. VHS has since been found afflicting marine fish in the northeastern
Pacific Ocean, the North Sea, and the Baltic Sea. Since 2005, massive die-offs have occurred among a wide variety of freshwater species in the Great Lakes region of North America.
Adenovirus can cause severe necrotizing pneumonia in which all or part of a lung has increased translucency radiographically, which is called Swyer-James Syndrome. Severe adenovirus pneumonia also may result in bronchiolitis obliterans, a subacute inflammatory process in which the small airways are replaced by scar tissue, resulting in a reduction in lung volume and lung compliance.
Although no specific treatment for acute infection with SuHV1 is available, vaccination can alleviate clinical signs in pigs of certain ages. Typically, mass vaccination of all pigs on the farm with a modified live virus vaccine is recommended. Intranasal vaccination of sows and neonatal piglets one to seven days old, followed by intramuscular (IM) vaccination of all other swine on the premises, helps reduce viral shedding and improve survival. The modified live virus replicates at the site of injection and in regional lymph nodes. Vaccine virus is shed in such low levels, mucous transmission to other animals is minimal. In gene-deleted vaccines, the thymidine kinase gene has also been deleted; thus, the virus cannot infect and replicate in neurons. Breeding herds are recommended to be vaccinated quarterly, and finisher pigs should be vaccinated after levels of maternal antibody decrease. Regular vaccination results in excellent control of the disease. Concurrent antibiotic therapy via feed and IM injection is recommended for controlling secondary bacterial pathogens.
SuHV1 can be used to analyze neural circuits in the central nervous system (CNS). For this purpose the attenuated (less virulent) Bartha SuHV1 strain is commonly used and is employed as a retrograde and anterograde transneuronal tracer. In the retrograde direction, SuHV1-Bartha is transported to a neuronal cell body via its axon, where it is replicated and dispersed throughout the cytoplasm and the dendritic tree. SuHV1-Bartha released at the synapse is able to cross the synapse to infect the axon terminals of synaptically connected neurons, thereby propagating the virus; however, the extent to which non-synaptic transneuronal transport may also occur is uncertain. Using temporal studies and/or genetically engineered strains of SuHV1-Bartha, second, third, and higher order neurons may be identified in the neural network of interest.
Most healthy people working with infants and children face no special risk from CMV infection. However, for women of child-bearing age who previously have not been infected with CMV, there is a potential risk to the developing unborn child (the risk is described above in the Pregnancy section). Contact with children who are in day care, where CMV infection is commonly transmitted among young children (particularly toddlers), may be a source of exposure to CMV. Since CMV is transmitted through contact with infected body fluids, including urine and saliva, child care providers (meaning day care workers, special education teachers, as well as mothers) should be educated about the risks of CMV infection and the precautions they can take. Day care workers appear to be at a greater risk than hospital and other health care providers, and this may be due in part to the increased emphasis on personal hygiene in the health care setting.
Recommendations for individuals providing care for infants and children:
- Employees should be educated concerning CMV, its transmission, and hygienic practices, such as handwashing, which minimize the risk of infection.
- Susceptible nonpregnant women working with infants and children should not routinely be transferred to other work situations.
- Pregnant women working with infants and children should be informed of the risk of acquiring CMV infection and the possible effects on the unborn child.
- Routine laboratory testing for CMV antibody in female workers is not specifically recommended due to its high occurrence, but can be performed to determine their immune status.
Viral disease is usually detected by clinical presentation, for instance severe muscle and joint pains preceding fever, or skin rash and swollen lymph glands.
Laboratory investigation is not directly effective in detecting viral infections, because they do not themselves increase the white blood cell count. Laboratory investigation may be useful in diagnosing associated bacterial infections, however.
Viral infections are commonly of limited duration, so treatment usually consists in reducing the symptoms; antipyretic and analgesic drugs are commonly prescribed.
Recommendations for pregnant women with regard to CMV infection:
- Throughout the pregnancy, practice good personal hygiene, especially handwashing with soap and water, after contact with diapers or oral secretions (particularly with a child who is in day care). Sharing of food, eating and drinking utensils, and contact with toddlers' saliva should be avoided.
- Women who develop a mononucleosis-like illness during pregnancy should be evaluated for CMV infection and counseled about the possible risks to the unborn child.
- Laboratory testing for antibody to CMV can be performed to determine if a woman has already had CMV infection.
- Recovery of CMV from the cervix or urine of women at or before the time of delivery does not warrant a cesarean section.
- The demonstrated benefits of breast-feeding outweigh the minimal risk of acquiring CMV from the breast-feeding mother.
- There is no need to either screen for CMV or exclude CMV-excreting children from schools or institutions because the virus is frequently found in many healthy children and adults.
Treatment with hyperimmune globulin in mothers with primary CMV infection has been shown to be effective in preventing congenital disease in several studies. One study did not show significant decrease in the risk of congenital cytomegalovirus infection.
Most household disinfectants will inactivate FHV-1. The virus can survive up to 18 hours in a damp environment, but less in a dry environment and only shortly as an aerosol.
Carrión's disease, or Oroya fever, or Peruvian wart is a rare infectious disease found only in Peru, Ecuador, and Colombia. It is endemic in some areas of Peru, is caused by infection with the bacterium "Bartonella bacilliformis", and transmitted by sandflies of genus "Lutzomyia".
Cat scratch disease occurs worldwide. Cats are the main reservoir of "Bartonella henselae", and the bacterium is transmitted to cats by the cat flea "Ctenocephalides felis". Infection in cats is very common with a prevalence estimated between 40-60%, younger cats being more commonly infective. Cats usually become immune to the infection, while dogs may be very symptomatic. Humans may also acquire it through flea or tick bites from infected dogs, cats, coyotes, and foxes.
Trench fever, produced by "Bartonella quintana" infection, is transmitted by the human body louse "Pediculus humanus corporis". Humans are the only known reservoir. Thorough washing of clothing may help to interrupt the transmission of infection.
A possible role for ticks in transmission of "Bartonella" species remains to be elucidated; in November 2011, "Bartonella rochalimae", "B. quintana", and "B. elizabethae" DNA was first reported in "Rhipicephalus sanguineus" and "Dermacentor nitens" ticks in Peru.
FVR is transmitted through direct contact only. It replicates in the nasal and nasopharyngeal tissues and the tonsils. Viremia (the presence of the virus in the blood) is rare. The virus is shed in saliva and eye and nasal secretions, and can also be spread by fomites. FVR has a two- to five-day incubation period. The virus is shed for one to three weeks postinfection. Latently infected cats (carriers) will shed FHV-1 intermittently for life, with the virus persisting within the trigeminal ganglion. Stress and use of corticosteroids precipitate shedding. Most disinfectants, antiseptics and detergents are effective against the virus.
"Hepatitis C" (originally "non-A non-B hepatitis") is caused by hepatitis C virus (HCV), an RNA virus that is a member of the Flaviviridae family. HCV can be transmitted through contact with blood (including through sexual contact if the two parties' blood is mixed) and can also cross the placenta. Hepatitis C usually leads to chronic hepatitis, culminating in cirrhosis in some people. It usually remains asymptomatic for decades. Patients with hepatitis C are susceptible to severe hepatitis if they contract either hepatitis A or B, so all persons with hepatitis C should be immunized against hepatitis A and hepatitis B if they are not already immune, and avoid alcohol. HCV viral levels can be reduced to undetectable levels by a combination of interferon and the antiviral drug ribavirin. The genotype of the virus is the primary determinant of the rate of response to this treatment regimen, with genotype 1 being the most resistant.
Hepatitis C is the most common chronic blood-borne infection in the United States.
The most common cause of hepatitis is viral. Although they are classified under the disease hepatitis, these viruses are not all related.
Bartonellosis is an infectious disease produced by bacteria of the genus "Bartonella".
"Bartonella" species cause diseases such as Carrión´s disease, trench fever, cat-scratch disease, bacillary angiomatosis, peliosis hepatis, chronic bacteremia, endocarditis, chronic lymphadenopathy, and neurological disorders.
virus DNA persists in the body after infection, and in some people the disease recurs. Although rare, reactivation is seen most often following alcohol or drug use, or in people with impaired immunity. HBV goes through cycles of replication and non-replication. Approximately 50% of overt carriers experience acute reactivation. Males with baseline ALT of 200 UL/L are three times more likely to develop a reactivation than people with lower levels. Although reactivation can occur spontaneously, people who undergo chemotherapy have a higher risk. Immunosuppressive drugs favor increased HBV replication while inhibiting cytotoxic T cell function in the liver. The risk of reactivation varies depending on the serological profile; those with detectable HBsAg in their blood are at the greatest risk, but those with only antibodies to the core antigen are also at risk. The presence of antibodies to the surface antigen, which are considered to be a marker of immunity, does not preclude reactivation. Treatment with prophylactic antiviral drugs can prevent the serious morbidity associated with HBV disease reactivation.